Source code for ase.spacegroup.symmetrize

"""
Provides utility functions for FixSymmetry class
"""
import numpy as np

from ase.utils import atoms_to_spglib_cell

__all__ = ['refine_symmetry', 'check_symmetry']


def print_symmetry(symprec, dataset):
    print("ase.spacegroup.symmetrize: prec", symprec,
          "got symmetry group number", dataset["number"],
          ", international (Hermann-Mauguin)", dataset["international"],
          ", Hall ", dataset["hall"])


[docs]def refine_symmetry(atoms, symprec=0.01, verbose=False): """ Refine symmetry of an Atoms object Parameters ---------- atoms - input Atoms object symprec - symmetry precicion verbose - if True, print out symmetry information before and after Returns ------- spglib dataset """ import spglib # test orig config with desired tol dataset = check_symmetry(atoms, symprec, verbose=verbose) # set actual cell to symmetrized cell vectors by copying # transformed and rotated standard cell std_cell = dataset['std_lattice'] trans_std_cell = dataset['transformation_matrix'].T @ std_cell rot_trans_std_cell = trans_std_cell @ dataset['std_rotation_matrix'] atoms.set_cell(rot_trans_std_cell, True) # get new dataset and primitive cell dataset = check_symmetry(atoms, symprec=symprec, verbose=verbose) res = spglib.find_primitive(atoms_to_spglib_cell(atoms), symprec=symprec) prim_cell, prim_scaled_pos, prim_types = res # calculate offset between standard cell and actual cell std_cell = dataset['std_lattice'] rot_std_cell = std_cell @ dataset['std_rotation_matrix'] rot_std_pos = dataset['std_positions'] @ rot_std_cell pos = atoms.get_positions() dp0 = (pos[list(dataset['mapping_to_primitive']).index(0)] - rot_std_pos[ list(dataset['std_mapping_to_primitive']).index(0)]) # create aligned set of standard cell positions to figure out mapping rot_prim_cell = prim_cell @ dataset['std_rotation_matrix'] inv_rot_prim_cell = np.linalg.inv(rot_prim_cell) aligned_std_pos = rot_std_pos + dp0 # find ideal positions from position of corresponding std cell atom + # integer_vec . primitive cell vectors # here we are assuming that primitive vectors returned by find_primitive # are compatible with std_lattice returned by get_symmetry_dataset mapping_to_primitive = list(dataset['mapping_to_primitive']) std_mapping_to_primitive = list(dataset['std_mapping_to_primitive']) pos = atoms.get_positions() for i_at in range(len(atoms)): std_i_at = std_mapping_to_primitive.index(mapping_to_primitive[i_at]) dp = aligned_std_pos[std_i_at] - pos[i_at] dp_s = dp @ inv_rot_prim_cell pos[i_at] = (aligned_std_pos[std_i_at] - np.round(dp_s) @ rot_prim_cell) atoms.set_positions(pos) # test final config with tight tol return check_symmetry(atoms, symprec=1e-4, verbose=verbose)
[docs]def check_symmetry(atoms, symprec=1.0e-6, verbose=False): """ Check symmetry of `atoms` with precision `symprec` using `spglib` Prints a summary and returns result of `spglib.get_symmetry_dataset()` """ import spglib dataset = spglib.get_symmetry_dataset(atoms_to_spglib_cell(atoms), symprec=symprec) if verbose: print_symmetry(symprec, dataset) return dataset
def is_subgroup(sup_data, sub_data, tol=1e-10): """ Test if spglib dataset `sub_data` is a subgroup of dataset `sup_data` """ for rot1, trns1 in zip(sub_data['rotations'], sub_data['translations']): for rot2, trns2 in zip(sup_data['rotations'], sup_data['translations']): if np.all(rot1 == rot2) and np.linalg.norm(trns1 - trns2) < tol: break else: return False return True def prep_symmetry(atoms, symprec=1.0e-6, verbose=False): """ Prepare `at` for symmetry-preserving minimisation at precision `symprec` Returns a tuple `(rotations, translations, symm_map)` """ import spglib dataset = spglib.get_symmetry_dataset(atoms_to_spglib_cell(atoms), symprec=symprec) if verbose: print_symmetry(symprec, dataset) rotations = dataset['rotations'].copy() translations = dataset['translations'].copy() symm_map = [] scaled_pos = atoms.get_scaled_positions() for (rot, trans) in zip(rotations, translations): this_op_map = [-1] * len(atoms) for i_at in range(len(atoms)): new_p = rot @ scaled_pos[i_at, :] + trans dp = scaled_pos - new_p dp -= np.round(dp) i_at_map = np.argmin(np.linalg.norm(dp, axis=1)) this_op_map[i_at] = i_at_map symm_map.append(this_op_map) return (rotations, translations, symm_map) def symmetrize_rank1(lattice, inv_lattice, forces, rot, trans, symm_map): """ Return symmetrized forces lattice vectors expected as row vectors (same as ASE get_cell() convention), inv_lattice is its matrix inverse (reciprocal().T) """ scaled_symmetrized_forces_T = np.zeros(forces.T.shape) scaled_forces_T = np.dot(inv_lattice.T, forces.T) for (r, t, this_op_map) in zip(rot, trans, symm_map): transformed_forces_T = np.dot(r, scaled_forces_T) scaled_symmetrized_forces_T[:, this_op_map] += transformed_forces_T scaled_symmetrized_forces_T /= len(rot) symmetrized_forces = (lattice.T @ scaled_symmetrized_forces_T).T return symmetrized_forces def symmetrize_rank2(lattice, lattice_inv, stress_3_3, rot): """ Return symmetrized stress lattice vectors expected as row vectors (same as ASE get_cell() convention), inv_lattice is its matrix inverse (reciprocal().T) """ scaled_stress = np.dot(np.dot(lattice, stress_3_3), lattice.T) symmetrized_scaled_stress = np.zeros((3, 3)) for r in rot: symmetrized_scaled_stress += np.dot(np.dot(r.T, scaled_stress), r) symmetrized_scaled_stress /= len(rot) sym = np.dot(np.dot(lattice_inv, symmetrized_scaled_stress), lattice_inv.T) return sym