Source code for ase.io.onetep

import re
import warnings
from copy import deepcopy
from os.path import dirname, isfile
from pathlib import Path

import numpy as np

from ase.atoms import Atoms
from ase.calculators.singlepoint import SinglePointDFTCalculator
from ase.cell import Cell
from ase.units import Bohr

no_positions_error = (
    "no positions can be read from this onetep output "
    "if you wish to use ASE to read onetep outputs "
    "please use uppercase block positions in your calculations"
)

unable_to_read = "unable to read this onetep output file, ending"

# taken from onetep source code,
# does not seem to be from any known NIST data
units = {"Hartree": 27.2116529, "Bohr": 1 / 1.889726134583548707935}

# Want to add a functionality? add a global constant below
ONETEP_START = re.compile(
    r"(?i)^\s*\|\s*Linear-Scaling\s*Ab\s*"
    r"Initio\s*Total\s*Energy\s*Program\s*\|\s*$"
)
ONETEP_STOP = re.compile(r"(?i)^\s*-+\s*TIMING\s*INFORMATION\s*-+\s*$")
ONETEP_TOTAL_ENERGY = re.compile(
    r"(?i)^\s*\|\s*\*{3}\s*NGWF\s*" r"optimisation\s*converged\s*\*{3}\s*\|\s*$"
)
ONETEP_FORCE = re.compile(r"(?i)^\s*\*+\s*Forces\s*\*+\s*$")
ONETEP_MULLIKEN = re.compile(r"(?i)^\s*Mulliken\s*Atomic\s*Populations\s*$")
ONETEP_SPIN = re.compile(r"(?i)^\s*Down\s*spin\s*density")
ONETEP_POSITION = re.compile(r"(?i)^\s*Cell\s*Contents\s*$")
ONETEP_FIRST_POSITION = re.compile(
    r"^\s*%BLOCK\s*POSITIONS\s*_?\s*(ABS|FRAC)\s*:?\s*([*#!].*)?$"
)
ONETEP_WRONG_FIRST_POSITION = re.compile(
    r"^\s*%block\s*positions\s*_?\s*(abs|frac)\s*:?\s*([*#!].*)?$"
)
ONETEP_RESUMING_GEOM = re.compile(
    r"(?i)^\s*<{16}\s*Resuming\s*previous"
    r"\s*ONETEP\s*Geometry\s*Optimisation\s*>{16}\s*$"
)

ONETEP_ATOM_COUNT = re.compile(r"(?i)^\s*Totals\s*:\s*(\d+\s*)*$")
ONETEP_IBFGS_ITER = re.compile(r"(?i)^\s*BFGS\s*:\s*starting\s*iteration")
ONETEP_IBFGS_IMPROVE = re.compile(r"(?i)^\s*BFGS\s*:\s*improving\s*iteration")
ONETEP_START_GEOM = re.compile(
    r"(?i)^<+\s*Starting\s*ONETEP\s*Geometry\s*Optimisation\s*>+$"
)
ONETEP_END_GEOM = re.compile(r"(?i)^\s*BFGS\s*:\s*Final\s*Configuration:\s*$")

ONETEP_SPECIES = re.compile(r"(?i)^\s*%BLOCK\s*SPECIES\s*:?\s*([*#!].*)?$")

ONETEP_FIRST_CELL = re.compile(
    r"(?i)^\s*%BLOCK\s*LATTICE\s*_?\s*CART\s*:?\s*([*#!].*)?$"
)
ONETEP_STRESS_CELL = re.compile(
    r"(?i)^\s*stress_calculation:\s*cell\s*geometry\s*$"
)


def get_onetep_keywords(path):
    if isinstance(path, str):
        with open(path) as fd:
            results = read_onetep_in(fd, only_keywords=True)
    else:
        results = read_onetep_in(path, only_keywords=True)

    # If there is an include file, the entire
    # file keyword's will be included in the dict
    # and the include_file keyword will be deleted
    if "include_file" in results["keywords"]:
        warnings.warn("include_file will be deleted from the dict")
        del results["keywords"]["include_file"]
    return results["keywords"]


[docs]def read_onetep_in(fd, **kwargs): """ Read a single ONETEP input. This function can be used to visually check ONETEP inputs, using the ase gui. It can also be used to get access to the input parameters attached to the ONETEP calculator returned The function should work on inputs which contain 'include_file' command(s), (possibly recursively but untested) The function should work on input which contains exotic element(s) name(s) if the specie block is present to map them back to real element(s) Parameters ---------- fd : io-object File to read. Return ------ structure: Atoms Atoms object with cell and a Onetep calculator attached which contains the keywords dictionary """ fdi_lines = fd.readlines() try: fd_path = Path(fd.name).resolve() fd_parent = fd_path.parent include_files = [fd_path] except AttributeError: # We are in a StringIO or something similar fd_path = Path().cwd() fd_parent = fd_path include_files = [Path().cwd()] def clean_lines(lines): """ Remove indesirable line from the input """ new_lines = [] for line in lines: sep = re.split(r"[!#]", line.strip())[0] if sep: new_lines.append(sep) return new_lines # Skip comments and empty lines fdi_lines = clean_lines(fdi_lines) # Are we in a block? block_start = 0 keywords = {} atoms = Atoms() cell = np.zeros((3, 3)) fractional = False positions = False symbols = False # Main loop reading the input for n, line in enumerate(fdi_lines): line_lower = line.lower() if re.search(r"^\s*%block", line_lower): block_start = n + 1 if re.search(r"lattice_cart$", line_lower): if re.search(r"^\s*ang\s*$", fdi_lines[block_start]): cell = np.loadtxt(fdi_lines[n + 2: n + 5]) else: cell = np.loadtxt(fdi_lines[n + 1: n + 4]) cell *= Bohr if not block_start: if "devel_code" in line_lower: warnings.warn("devel_code is not supported") continue # Splits line on any valid onetep separator sep = re.split(r"[:=\s]+", line) keywords[sep[0]] = " ".join(sep[1:]) # If include_file is used, we open the included file # and insert it in the current fdi_lines... # ONETEP does not work with cascade # and this SHOULD NOT work with cascade if re.search(r"^\s*include_file$", sep[0]): name = sep[1].replace("'", "") name = name.replace('"', "") new_path = fd_parent / name for path in include_files: if new_path.samefile(path): raise ValueError("invalid/recursive include_file") new_fd = open(new_path) new_lines = new_fd.readlines() new_lines = clean_lines(new_lines) for include_line in new_lines: sep = re.split(r"[:=\s]+", include_line) if re.search(r"^\s*include_file$", sep[0]): raise ValueError("nested include_file") fdi_lines[:] = ( fdi_lines[: n + 1] + new_lines + fdi_lines[n + 1:] ) include_files.append(new_path) continue if re.search(r"^\s*%endblock", line_lower): if re.search(r"\s*positions_", line_lower): head = re.search(r"(?i)^\s*(\S*)\s*$", fdi_lines[block_start]) head = head.group(1).lower() if head else "" conv = 1 if head == "ang" else units["Bohr"] # Skip one line if head is True to_read = fdi_lines[block_start + int(bool(head)): n] positions = np.loadtxt(to_read, usecols=(1, 2, 3)) positions *= conv symbols = np.loadtxt(to_read, usecols=(0), dtype="str") if re.search(r".*frac$", line_lower): fractional = True elif re.search(r"^\s*%endblock\s*species$", line_lower): els = fdi_lines[block_start:n] species = {} for el in els: sep = el.split() species[sep[0]] = sep[1] to_read = [i.strip() for i in fdi_lines[block_start:n]] keywords["species"] = to_read elif re.search(r"lattice_cart$", line_lower): pass else: to_read = [i.strip() for i in fdi_lines[block_start:n]] block_title = line_lower.replace("%endblock", "").strip() keywords[block_title] = to_read block_start = 0 # We don't need a fully valid onetep # input to read the keywords, just # the keywords if kwargs.get("only_keywords", False): return {"keywords": keywords} # Necessary if we have only one atom # Check if the cell is valid (3D) if not cell.any(axis=1).all(): raise ValueError("invalid cell specified") if positions is False: raise ValueError("invalid position specified") if symbols is False: raise ValueError("no symbols found") positions = positions.reshape(-1, 3) symbols = symbols.reshape(-1) tags = [] info = {"onetep_species": []} for symbol in symbols: label = symbol.replace(species[symbol], "") if label.isdigit(): tags.append(int(label)) else: tags.append(0) info["onetep_species"].append(symbol) atoms = Atoms( [species[i] for i in symbols], cell=cell, pbc=True, tags=tags, info=info ) if fractional: atoms.set_scaled_positions(positions / units["Bohr"]) else: atoms.set_positions(positions) results = {"atoms": atoms, "keywords": keywords} return results
[docs]def write_onetep_in( fd, atoms, edft=False, xc="PBE", ngwf_count=-1, ngwf_radius=9.0, keywords={}, pseudopotentials={}, pseudo_path=".", pseudo_suffix=None, **kwargs ): """ Write a single ONETEP input. This function will be used by ASE to perform various workflows (Opt, NEB...) or can be used manually to quickly create ONETEP input file(s). The function will first write keywords in alphabetic order in lowercase. Secondly, blocks will be written in alphabetic order in uppercase. Two ways to work with the function: - By providing only (simple) keywords present in the parameters. ngwf_count and ngwf_radius accept multiple types as described in the Parameters section. - If the keywords parameters is provided as a dictionary these keywords will be used to write the input file and will take priority. If no pseudopotentials are provided in the parameters and the function will try to look for suitable pseudopotential in the pseudo_path. Parameters ---------- fd : file File to write. atoms: Atoms Atoms including Cell object to write. edft: Bool Activate EDFT. xc: str DFT xc to use e.g (PBE, RPBE, ...) ngwf_count: int|list|dict Behaviour depends on the type: int: every species will have this amount of ngwfs. list: list of int, will be attributed alphabetically to species: dict: keys are species name(s), value are their number: ngwf_radius: int|list|dict Behaviour depends on the type: float: every species will have this radius. list: list of float, will be attributed alphabetically to species: [10.0, 9.0] dict: keys are species name(s), value are their radius: {'Na': 9.0, 'Cl': 10.0} keywords: dict Dictionary with ONETEP keywords to write, keywords with lists as values will be treated like blocks, with each element of list being a different line. pseudopotentials: dict Behaviour depends on the type: keys are species name(s) their value are the pseudopotential file to use: {'Na': 'Na.usp', 'Cl': 'Cl.usp'} pseudo_path: str Where to look for pseudopotential, correspond to the pseudo_path keyword of ONETEP. pseudo_suffix: str Suffix for the pseudopotential filename to look for, useful if you have multiple sets of pseudopotentials in pseudo_path. """ label = kwargs.get("label", "onetep") try: directory = kwargs.get("directory", Path(dirname(fd.name))) except AttributeError: directory = "." autorestart = kwargs.get("autorestart", False) elements = np.array(atoms.symbols) tags = np.array(atoms.get_tags()) species_maybe = atoms.info.get("onetep_species", False) #  We look if the atom.info contains onetep species information # If it does, we use it, as it might contains character #  which are not allowed in ase tags, if not we fall back # to tags and use them instead. if species_maybe: if set(species_maybe) != set(elements): species = np.array(species_maybe) else: species = elements else: formatted_tags = np.array(["" if i == 0 else str(i) for i in tags]) species = np.char.add(elements, formatted_tags) numbers = np.array(atoms.numbers) tmp = np.argsort(species) # We sort both Z and name the same numbers = np.take_along_axis(numbers, tmp, axis=0) # u_elements = np.take_along_axis(elements, tmp, axis=0) u_species = np.take_along_axis(species, tmp, axis=0) elements = np.take_along_axis(elements, tmp, axis=0) # We want to keep unique but without sort: small trick with index idx = np.unique(u_species, return_index=True)[1] elements = elements[idx] # Unique species u_species = u_species[idx] numbers = numbers[idx] n_sp = len(u_species) if isinstance(ngwf_count, int): ngwf_count = dict(zip(u_species, [ngwf_count] * n_sp)) elif isinstance(ngwf_count, list): ngwf_count = dict(zip(u_species, ngwf_count)) elif isinstance(ngwf_count, dict): pass else: raise TypeError("ngwf_count can only be int|list|dict") if isinstance(ngwf_radius, float): ngwf_radius = dict(zip(u_species, [ngwf_radius] * n_sp)) elif isinstance(ngwf_radius, list): ngwf_radius = dict(zip(u_species, ngwf_radius)) elif isinstance(ngwf_radius, dict): pass else: raise TypeError("ngwf_radius can only be float|list|dict") pp_files = re.sub("'|\"", "", keywords.get("pseudo_path", pseudo_path)) pp_files = Path(pp_files).glob("*") pp_files = [i for i in pp_files if i.is_file()] if pseudo_suffix: common_suffix = [pseudo_suffix] else: common_suffix = [".usp", ".recpot", ".upf", ".paw", ".psp", ".pspnc"] if keywords.get("species_pot", False): pp_list = keywords["species_pot"] elif isinstance(pseudopotentials, dict): pp_list = [] for idx, el in enumerate(u_species): if el in pseudopotentials: pp_list.append(f"{el} {pseudopotentials[el]}") else: for i in pp_files: reg_el_candidate = re.split(r"[-_.:= ]+", i.stem)[0] if ( elements[idx] == reg_el_candidate.title() and i.suffix.lower() in common_suffix ): pp_list.append(f"{el} {i.name}") else: raise TypeError("pseudopotentials object can only be dict") default_species = [] for idx, el in enumerate(u_species): tmp = "" tmp += u_species[idx] + " " + elements[idx] + " " tmp += str(numbers[idx]) + " " try: tmp += str(ngwf_count[el]) + " " except KeyError: tmp += str(ngwf_count[elements[idx]]) + " " try: tmp += str(ngwf_radius[el]) except KeyError: tmp += str(ngwf_radius[elements[idx]]) default_species.append(tmp) positions_abs = ["ang"] for s, p in zip(species, atoms.get_positions()): line = "{s:>5} {0:>12.6f} {1:>12.6f} {2:>12.6f}".format(s=s, *p) positions_abs.append(line) lattice_cart = ["ang"] for axis in atoms.get_cell(): line = "{:>16.8f} {:>16.8f} {:>16.8f}".format(*axis) lattice_cart.append(line) # Default keywords if not provided by the user, # most of them are ONETEP default, except write_forces # which is always turned on. default_keywords = { "xc_functional": xc, "edft": edft, "cutoff_energy": 20, "paw": False, "task": "singlepoint", "output_detail": "normal", "species": default_species, "pseudo_path": pseudo_path, "species_pot": pp_list, "positions_abs": positions_abs, "lattice_cart": lattice_cart, "write_forces": True, "forces_output_detail": "verbose", } # Main loop, fill the keyword dictionary keywords = {key.lower(): value for key, value in keywords.items()} for value in default_keywords: if not keywords.get(value, None): keywords[value] = default_keywords[value] # No pseudopotential provided, we look for them in pseudo_path # If autorestart is True, we look for restart files, # and turn on relevant keywords... if autorestart: keywords["read_denskern"] = isfile(directory / (label + ".dkn")) keywords["read_tightbox_ngwfs"] = isfile( directory / (label + ".tightbox_ngwfs") ) keywords["read_hamiltonian"] = isfile(directory / (label + ".ham")) # If not EDFT, hamiltonian is irrelevant. # print(keywords.get('edft', False)) # keywords['read_hamiltonian'] = \ # keywords.get('read_hamiltonian', False) & keywords.get('edft', False) keywords = dict(sorted(keywords.items())) lines = [] block_lines = [] for key, value in keywords.items(): if isinstance(value, (list, np.ndarray)): if not all(isinstance(_, str) for _ in value): raise TypeError("list values for blocks must be strings only") block_lines.append(("\n%block " + key).upper()) block_lines.extend(value) block_lines.append(("%endblock " + key).upper()) elif isinstance(value, bool): lines.append(str(key) + " : " + str(value)[0]) elif isinstance(value, (str, int, float)): lines.append(str(key) + " : " + str(value)) else: raise TypeError("keyword values must be list|str|bool") input_header = ( "!" + "-" * 78 + "!\n" + "!" + "-" * 33 + " INPUT FILE " + "-" * 33 + "!\n" + "!" + "-" * 78 + "!\n\n" ) input_footer = ( "\n!" + "-" * 78 + "!\n" + "!" + "-" * 32 + " END OF INPUT " + "-" * 32 + "!\n" + "!" + "-" * 78 + "!" ) fd.write(input_header) fd.writelines(line + "\n" for line in lines) fd.writelines(b_line + "\n" for b_line in block_lines) if "devel_code" in kwargs: warnings.warn("writing devel code as it is, at the end of the file") fd.writelines("\n" + line for line in kwargs["devel_code"]) fd.write(input_footer)
[docs]def read_onetep_out(fd, index=-1, improving=False, **kwargs): """ Read ONETEP output(s). !!! This function will be used by ASE when performing various workflows (Opt, NEB...) !!! Parameters ---------- fd : file File to read. index: slice Which atomic configuration to read improving: Bool If the output is a geometry optimisation, improving = True will keep line search configuration from BFGS Yields ------ structure: Atoms|list of Atoms """ # Put everything in memory fdo_lines = fd.readlines() n_lines = len(fdo_lines) freg = re.compile(r"-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?") # Used to store index of important elements output = { ONETEP_START: [], ONETEP_STOP: [], ONETEP_TOTAL_ENERGY: [], ONETEP_FORCE: [], ONETEP_SPIN: [], ONETEP_MULLIKEN: [], ONETEP_POSITION: [], ONETEP_FIRST_POSITION: [], ONETEP_WRONG_FIRST_POSITION: [], ONETEP_ATOM_COUNT: [], ONETEP_IBFGS_IMPROVE: [], ONETEP_IBFGS_ITER: [], ONETEP_START_GEOM: [], ONETEP_RESUMING_GEOM: [], ONETEP_END_GEOM: [], ONETEP_SPECIES: [], ONETEP_FIRST_CELL: [], ONETEP_STRESS_CELL: [], } # Index will be treated to get rid of duplicate or improving iterations output_corr = deepcopy(output) # Core properties that will be used in Yield properties = [ ONETEP_TOTAL_ENERGY, ONETEP_FORCE, ONETEP_MULLIKEN, ONETEP_FIRST_CELL, ] # Find all matches append them to the dictionary breg = "|".join([i.pattern.replace("(?i)", "") for i in output.keys()]) prematch = {} for idx, line in enumerate(fdo_lines): matches = re.search(breg, line) if matches: prematch[idx] = matches.group(0) for key, value in prematch.items(): for reg in output.keys(): if re.search(reg, value): output[reg].append(key) break output = {key: np.array(value) for key, value in output.items()} # Conveniance notation (pointers: no overhead, no additional memory) ibfgs_iter = np.hstack((output[ONETEP_IBFGS_ITER], output[ONETEP_END_GEOM])) ibfgs_start = output[ONETEP_START_GEOM] ibfgs_improve = output[ONETEP_IBFGS_IMPROVE] ibfgs_resume = output[ONETEP_RESUMING_GEOM] onetep_start = output[ONETEP_START] onetep_stop = output[ONETEP_STOP] bfgs_keywords = np.hstack((ibfgs_improve, ibfgs_resume, ibfgs_iter)) bfgs_keywords = np.sort(bfgs_keywords) core_keywords = np.hstack( ( ibfgs_iter, ibfgs_start, ibfgs_improve, ibfgs_resume, ibfgs_iter, onetep_start, onetep_stop, ) ) core_keywords = np.sort(core_keywords) i_first_positions = output[ONETEP_FIRST_POSITION] is_frac_positions = [i for i in i_first_positions if "FRAC" in fdo_lines[i]] # In onetep species can have arbritary names, # We want to map them to real element names # Via the species block # species = np.concatenate((output[ONETEP_SPECIES], # output[ONETEP_SPECIESL])).astype(np.int32) species = output[ONETEP_SPECIES] icells = np.hstack((output[ONETEP_FIRST_CELL], output[ONETEP_STRESS_CELL])) icells = icells.astype(np.int32) # Using the fact that 0 == False and > 0 == True has_bfgs = ( len(ibfgs_iter) + len(output[ONETEP_START_GEOM]) + len(output[ONETEP_RESUMING_GEOM]) ) # When the input block position is written in lowercase # ONETEP does not print the initial position but a hash # of it, might be needed has_hash = len(output[ONETEP_WRONG_FIRST_POSITION]) def is_in_bfgs(idx): """ Check if a given index is in a BFGS block """ for past, future in zip( output[ONETEP_START], np.hstack((output[ONETEP_START][1:], [n_lines])), ): if past < idx < future: if np.any( (past < ibfgs_start) & (ibfgs_start < future) ) or np.any((past < ibfgs_resume) & (ibfgs_resume < future)): return True return False def where_in_bfgs(idx): for past, future in zip( core_keywords, np.hstack((core_keywords[1:], [n_lines])) ): if past < idx < future: if past in onetep_start: if future in ibfgs_start or future in ibfgs_resume: return "resume" continue # Are we in start or resume or improve if past in ibfgs_start: return "start" elif past in ibfgs_resume: return "resume" elif past in ibfgs_improve: return "improve" return False ipositions = np.hstack((output[ONETEP_POSITION], i_first_positions)).astype( np.int32 ) ipositions = np.sort(ipositions) n_pos = len(ipositions) # Some ONETEP files will not have any positions # due to how the software is coded. As a last # resort we look for a geom file with the same label. if n_pos == 0: if has_hash: raise RuntimeError(no_positions_error) raise RuntimeError(unable_to_read) to_del = [] # Important loop which: # - Get rid of improving BFGS iteration if improving == False # - Append None to properties to make sure each properties will # have the same length and each index correspond to the right # atomic configuration (hopefully). # Past is the index of the current atomic conf, future is the # index of the next one. for idx, (past, future) in enumerate( zip(ipositions, np.hstack((ipositions[1:], [n_lines]))) ): if has_bfgs: which_bfgs = where_in_bfgs(past) if which_bfgs == "resume": to_del.append(idx) continue if not improving: if which_bfgs == "improve": to_del.append(idx) continue # We append None if no properties in contained for # one specific atomic configurations. for prop in properties: (tmp,) = np.where((past < output[prop]) & (output[prop] <= future)) if len(tmp) == 0: output_corr[prop].append(None) else: output_corr[prop].extend(output[prop][tmp[:1]]) if to_del and len(to_del) != n_pos: new_indices = np.setdiff1d(np.arange(n_pos), to_del) ipositions = ipositions[new_indices] # Bunch of methods to grep properties from output. def parse_cell(idx): a, b, c = np.loadtxt([fdo_lines[idx + 2]]) * units["Bohr"] al, be, ga = np.loadtxt([fdo_lines[idx + 4]]) cell = Cell.fromcellpar([a, b, c, al, be, ga]) return np.array(cell) def parse_charge(idx): n = 0 offset = 4 while idx + n < len(fdo_lines): if not fdo_lines[idx + n].strip(): tmp_charges = np.loadtxt( fdo_lines[idx + offset: idx + n - 1], usecols=3 ) return np.reshape(tmp_charges, -1) n += 1 return None #  In ONETEP there is no way to differentiate electronic entropy #  and entropy due to solvent, therefore there is no way to # extrapolate the energy at 0 K. We return the last energy #  instead. def parse_energy(idx): n = 0 while idx + n < len(fdo_lines): if re.search(r"^\s*\|\s*Total\s*:.*\|\s*$", fdo_lines[idx + n]): energy_str = re.search(freg, fdo_lines[idx + n]).group(0) return float(energy_str) * units["Hartree"] n += 1 return None def parse_fermi_level(idx): n = 0 fermi_levels = None while idx + n < len(fdo_lines): if "Fermi_level" in fdo_lines[idx + n]: tmp = "\n".join(fdo_lines[idx + n: idx + n + 1]) fermi_level = re.findall(freg, tmp) fermi_levels = [ float(i) * units["Hartree"] for i in fermi_level ] if re.search( r"^\s*<{5}\s*CALCULATION\s*SUMMARY\s*>{5}\s*$", fdo_lines[idx + n], ): return fermi_levels n += 1 return None def parse_first_cell(idx): n = 0 offset = 1 while idx + n < len(fdo_lines): if re.search( r'(?i)^\s*"?\s*ang\s*"?\s*([*#!].*)?$', fdo_lines[idx + n] ): offset += 1 if re.search( r"(?i)^\s*%ENDBLOCK\s*LATTICE" r"\s*_?\s*CART\s*:?\s*([*#!].*)?$", fdo_lines[idx + n], ): cell = np.loadtxt(fdo_lines[idx + offset: idx + n]) return cell if offset == 2 else cell * units["Bohr"] n += 1 return None def parse_first_positions(idx): n = 0 offset = 1 while idx + n < len(fdo_lines): if re.search( r'(?i)^\s*"?\s*ang\s*"?\s*([*#!].*)?$', fdo_lines[idx + n] ): offset += 1 if re.search(r"^\s*%ENDBLOCK\s*POSITIONS_", fdo_lines[idx + n]): if "FRAC" in fdo_lines[idx + n]: conv_factor = 1 else: conv_factor = units["Bohr"] tmp = np.loadtxt( fdo_lines[idx + offset: idx + n], dtype="str" ).reshape(-1, 4) els = np.char.array(tmp[:, 0]) if offset == 2: pos = tmp[:, 1:].astype(np.float64) else: pos = tmp[:, 1:].astype(np.float64) * conv_factor try: atoms = Atoms(els, pos) # ASE doesn't recognize names used in ONETEP # as chemical symbol: dig deeper except KeyError: tags, real_elements = find_correct_species( els, idx, first=True ) atoms = Atoms(real_elements, pos) atoms.set_tags(tags) atoms.info["onetep_species"] = list(els) return atoms n += 1 return None def parse_force(idx): n = 0 while idx + n < len(fdo_lines): if re.search(r"(?i)^\s*\*\s*TOTAL:.*\*\s*$", fdo_lines[idx + n]): tmp = np.loadtxt( fdo_lines[idx + 6: idx + n - 2], dtype=np.float64, usecols=(3, 4, 5), ) return tmp * units["Hartree"] / units["Bohr"] n += 1 return None def parse_positions(idx): n = 0 offset = 7 stop = 0 while idx + n < len(fdo_lines): if re.search(r"^\s*x{60,}\s*$", fdo_lines[idx + n]): stop += 1 if stop == 2: tmp = np.loadtxt( fdo_lines[idx + offset: idx + n], dtype="str", usecols=(1, 3, 4, 5), ) els = np.char.array(tmp[:, 0]) pos = tmp[:, 1:].astype(np.float64) * units["Bohr"] try: atoms = Atoms(els, pos) # ASE doesn't recognize names used in ONETEP # as chemical symbol: dig deeper except KeyError: tags, real_elements = find_correct_species(els, idx) atoms = Atoms(real_elements, pos) atoms.set_tags(tags) atoms.info["onetep_species"] = list(els) return atoms n += 1 return None def parse_species(idx): n = 1 element_map = {} while idx + n < len(fdo_lines): sep = fdo_lines[idx + n].split() if re.search( r"(?i)^\s*%ENDBLOCK\s*SPECIES\s*:?\s*([*#!].*)?$", fdo_lines[idx + n], ): return element_map to_skip = re.search( r"(?i)^\s*(ang|bohr)\s*([*#!].*)?$", fdo_lines[idx + n] ) if not to_skip: element_map[sep[0]] = sep[1] n += 1 return None def parse_spin(idx): n = 0 offset = 4 while idx + n < len(fdo_lines): if not fdo_lines[idx + n].strip(): # If no spin is present we return None try: tmp_spins = np.loadtxt( fdo_lines[idx + offset: idx + n - 1], usecols=4 ) return np.reshape(tmp_spins, -1) except ValueError: return None n += 1 return None # This is needed if ASE doesn't recognize the element def find_correct_species(els, idx, first=False): real_elements = [] tags = [] # Find nearest species block in case of # multi-output file with different species blocks. if first: closest_species = np.argmin(abs(idx - species)) else: tmp = idx - species tmp[tmp < 0] = 9999999999 closest_species = np.argmin(tmp) elements_map = real_species[closest_species] for el in els: real_elements.append(elements_map[el]) tag_maybe = el.replace(elements_map[el], "") if tag_maybe.isdigit(): tags.append(int(tag_maybe)) else: tags.append(False) return tags, real_elements cells = [] for idx in icells: if idx in output[ONETEP_STRESS_CELL]: cell = parse_cell(idx) if idx else None else: cell = parse_first_cell(idx) if idx else None cells.append(cell) charges = [] for idx in output_corr[ONETEP_MULLIKEN]: charge = parse_charge(idx) if idx else None charges.append(charge) energies = [] for idx in output_corr[ONETEP_TOTAL_ENERGY]: energy = parse_energy(idx) if idx else None energies.append(energy) fermi_levels = [] for idx in output_corr[ONETEP_TOTAL_ENERGY]: fermi_level = parse_fermi_level(idx) if idx else None fermi_levels.append(fermi_level) magmoms = [] for idx in output_corr[ONETEP_MULLIKEN]: magmom = parse_spin(idx) if idx else None magmoms.append(magmom) real_species = [] for idx in species: real_specie = parse_species(idx) real_species.append(real_specie) positions, forces = [], [] for idx in ipositions: if idx in i_first_positions: position = parse_first_positions(idx) else: position = parse_positions(idx) if position: positions.append(position) else: n_pos -= 1 break for idx in output_corr[ONETEP_FORCE]: force = parse_force(idx) if idx else None forces.append(force) n_pos = len(positions) # Numpy trick to get rid of configuration that are essentially the same # in a regular geometry optimisation with internal BFGS, the first # configuration is printed three time, we get rid of it properties = [energies, forces, charges, magmoms] if has_bfgs: tmp = [i.positions for i in positions] to_del = [] for i in range(len(tmp[:-1])): if is_in_bfgs(ipositions[i]): if np.array_equal(tmp[i], tmp[i + 1]): # If the deleted configuration has a property # we want to keep it for prop in properties: if prop[i + 1] is not None and prop[i] is None: prop[i] = prop[i + 1] to_del.append(i + 1) c = np.full((len(tmp)), True) c[to_del] = False energies = [energies[i] for i in range(n_pos) if c[i]] forces = [forces[i] for i in range(n_pos) if c[i]] charges = [charges[i] for i in range(n_pos) if c[i]] magmoms = [magmoms[i] for i in range(n_pos) if c[i]] positions = [positions[i] for i in range(n_pos) if c[i]] ipositions = [ipositions[i] for i in range(n_pos) if c[i]] n_pos = len(positions) # We take care of properties that only show up at # the beginning of onetep calculation whole = np.append(output[ONETEP_START], n_lines) if n_pos == 0: raise RuntimeError(unable_to_read) spin = np.full((n_pos), 1) for sp in output[ONETEP_SPIN]: tmp = zip(whole, whole[1:]) for past, future in tmp: if past < sp < future: p = (past < ipositions) & (ipositions < future) spin[p] = 2 cells_all = np.ones((n_pos, 3, 3)) for idx, cell in enumerate(output[ONETEP_FIRST_CELL]): tmp = zip(whole, whole[1:]) for past, future in tmp: if past < cell < future: p = (past < ipositions) & (ipositions < future) cells_all[p] = cells[idx] # Prepare atom objects with all the properties if isinstance(index, int): indices = [range(n_pos)[index]] else: indices = range(n_pos)[index] for idx in indices: positions[idx].set_cell(cells_all[idx]) if ipositions[idx] in is_frac_positions: positions[idx].set_scaled_positions(positions[idx].get_positions()) positions[idx].set_initial_charges(charges[idx]) calc = SinglePointDFTCalculator( positions[idx], energy=energies[idx] if energies else None, free_energy=energies[idx] if energies else None, forces=forces[idx] if forces else None, charges=charges[idx] if charges else None, magmoms=magmoms[idx] if magmoms else None, ) # calc.kpts = [(0, 0, 0) for _ in range(spin[idx])] positions[idx].calc = calc yield positions[idx]