Source code for ase.dft.bandgap

import warnings

import numpy as np


def get_band_gap(calc, direct=False, spin=None):
    warnings.warn('Please use ase.dft.bandgap.bandgap() instead!')
    gap, (s1, k1, n1), (s2, k2, n2) = bandgap(calc, direct, spin)
    ns = calc.get_number_of_spins()
    if ns == 2 and spin is None:
        return gap, (s1, k1), (s2, k2)
    return gap, k1, k2


[docs]def bandgap(calc=None, direct=False, spin=None, eigenvalues=None, efermi=None, output=None, kpts=None): """Calculates the band-gap. Parameters: calc: Calculator object Electronic structure calculator object. direct: bool Calculate direct band-gap. spin: int or None For spin-polarized systems, you can use spin=0 or spin=1 to look only at a single spin-channel. eigenvalues: ndarray of shape (nspin, nkpt, nband) or (nkpt, nband) Eigenvalues. efermi: float Fermi level (defaults to 0.0). Returns a (gap, p1, p2) tuple where p1 and p2 are tuples of indices of the valence and conduction points (s, k, n). Example: >>> gap, p1, p2 = bandgap(silicon.calc) Gap: 1.2 eV Transition (v -> c): [0.000, 0.000, 0.000] -> [0.500, 0.500, 0.000] >>> print(gap, p1, p2) 1.2 (0, 0, 3), (0, 5, 4) >>> gap, p1, p2 = bandgap(silicon.calc, direct=True) Direct gap: 3.4 eV Transition at: [0.000, 0.000, 0.000] >>> print(gap, p1, p2) 3.4 (0, 0, 3), (0, 0, 4) """ if calc: kpts = calc.get_ibz_k_points() nk = len(kpts) ns = calc.get_number_of_spins() eigenvalues = np.array([[calc.get_eigenvalues(kpt=k, spin=s) for k in range(nk)] for s in range(ns)]) if efermi is None: efermi = calc.get_fermi_level() efermi = efermi or 0.0 e_skn = eigenvalues - efermi if eigenvalues.ndim == 2: e_skn = e_skn[np.newaxis] # spinors if not np.isfinite(e_skn).all(): raise ValueError('Bad eigenvalues!') gap, (s1, k1, n1), (s2, k2, n2) = _bandgap(e_skn, spin, direct) if eigenvalues.ndim != 3: p1 = (k1, n1) p2 = (k2, n2) else: p1 = (s1, k1, n1) p2 = (s2, k2, n2) return gap, p1, p2
def _bandgap(e_skn, spin, direct): """Helper function.""" ns, nk, nb = e_skn.shape s1 = s2 = k1 = k2 = n1 = n2 = None N_sk = (e_skn < 0.0).sum(2) # number of occupied bands # Check for bands crossing the fermi-level if ns == 1: if np.ptp(N_sk[0]) > 0: return 0.0, (None, None, None), (None, None, None) elif spin is None: if (np.ptp(N_sk, axis=1) > 0).any(): return 0.0, (None, None, None), (None, None, None) elif np.ptp(N_sk[spin]) > 0: return 0.0, (None, None, None), (None, None, None) if (N_sk == 0).any() or (N_sk == nb).any(): raise ValueError('Too few bands!') e_skn = np.array([[e_skn[s, k, N_sk[s, k] - 1:N_sk[s, k] + 1] for k in range(nk)] for s in range(ns)]) ev_sk = e_skn[:, :, 0] # valence band ec_sk = e_skn[:, :, 1] # conduction band if ns == 1: s1 = 0 s2 = 0 gap, k1, k2 = find_gap(ev_sk[0], ec_sk[0], direct) n1 = N_sk[0, 0] - 1 n2 = n1 + 1 return gap, (0, k1, n1), (0, k2, n2) if spin is None: gap, k1, k2 = find_gap(ev_sk.ravel(), ec_sk.ravel(), direct) if direct: # Check also spin flips: for s in [0, 1]: g, k, _ = find_gap(ev_sk[s], ec_sk[1 - s], direct) if g < gap: gap = g k1 = k + nk * s k2 = k + nk * (1 - s) if gap > 0.0: s1, k1 = divmod(k1, nk) s2, k2 = divmod(k2, nk) n1 = N_sk[s1, k1] - 1 n2 = N_sk[s2, k2] return gap, (s1, k1, n1), (s2, k2, n2) return 0.0, (None, None, None), (None, None, None) gap, k1, k2 = find_gap(ev_sk[spin], ec_sk[spin], direct) s1 = spin s2 = spin n1 = N_sk[s1, k1] - 1 n2 = n1 + 1 return gap, (s1, k1, n1), (s2, k2, n2) def find_gap(ev_k, ec_k, direct): """Helper function.""" if direct: gap_k = ec_k - ev_k k = gap_k.argmin() return gap_k[k], k, k kv = ev_k.argmax() kc = ec_k.argmin() return ec_k[kc] - ev_k[kv], kv, kc