Source code for ase.build.bulk

"""Build crystalline systems"""
from math import sqrt
from typing import Any

from ase.atoms import Atoms
from ase.symbols import string2symbols
from ase.data import reference_states, atomic_numbers, chemical_symbols
from ase.utils import plural


def incompatible_cell(*, want, have):
    return RuntimeError(f'Cannot create {want} cell for {have} structure')


[docs]def bulk( name: str, crystalstructure: str = None, a: float = None, b: float = None, c: float = None, *, alpha: float = None, covera: float = None, u: float = None, orthorhombic: bool = False, cubic: bool = False, basis=None, ) -> Atoms: """Creating bulk systems. Crystal structure and lattice constant(s) will be guessed if not provided. name: str Chemical symbol or symbols as in 'MgO' or 'NaCl'. crystalstructure: str Must be one of sc, fcc, bcc, tetragonal, bct, hcp, rhombohedral, orthorhombic, mcl, diamond, zincblende, rocksalt, cesiumchloride, fluorite or wurtzite. a: float Lattice constant. b: float Lattice constant. If only a and b is given, b will be interpreted as c instead. c: float Lattice constant. alpha: float Angle in degrees for rhombohedral lattice. covera: float c/a ratio used for hcp. Default is ideal ratio: sqrt(8/3). u: float Internal coordinate for Wurtzite structure. orthorhombic: bool Construct orthorhombic unit cell instead of primitive cell which is the default. cubic: bool Construct cubic unit cell if possible. """ if c is None and b is not None: # If user passes (a, b) positionally, we want it as (a, c) instead: c, b = b, c if covera is not None and c is not None: raise ValueError("Don't specify both c and c/a!") xref = '' ref: Any = {} if name in chemical_symbols: # single element atomic_number = atomic_numbers[name] ref = reference_states[atomic_number] if ref is None: ref = {} # easier to 'get' things from empty dictionary than None else: xref = ref['symmetry'] if crystalstructure is None: # `ref` requires `basis` but not given and not pre-defined if basis is None and 'basis' in ref and ref['basis'] is None: raise ValueError('This structure requires an atomic basis') if xref == 'cubic': # P and Mn are listed as 'cubic' but the lattice constants # are 7 and 9. They must be something other than simple cubic # then. We used to just return the cubic one but that must # have been wrong somehow. --askhl raise ValueError( f'The reference structure of {name} is not implemented') # Mapping of name to number of atoms in primitive cell. structures = {'sc': 1, 'fcc': 1, 'bcc': 1, 'tetragonal': 1, 'bct': 1, 'hcp': 1, 'rhombohedral': 1, 'orthorhombic': 1, 'mcl': 1, 'diamond': 1, 'zincblende': 2, 'rocksalt': 2, 'cesiumchloride': 2, 'fluorite': 3, 'wurtzite': 2} if crystalstructure is None: crystalstructure = xref if crystalstructure not in structures: raise ValueError(f'No suitable reference data for bulk {name}.' f' Reference data: {ref}') magmom_per_atom = None if crystalstructure == xref: magmom_per_atom = ref.get('magmom_per_atom') if crystalstructure not in structures: raise ValueError(f'Unknown structure: {crystalstructure}.') # Check name: natoms = len(string2symbols(name)) natoms0 = structures[crystalstructure] if natoms != natoms0: raise ValueError('Please specify {} for {} and not {}' .format(plural(natoms0, 'atom'), crystalstructure, natoms)) if alpha is None: alpha = ref.get('alpha') if a is None: if xref != crystalstructure: raise ValueError('You need to specify the lattice constant.') if 'a' in ref: a = ref['a'] else: raise KeyError(f'No reference lattice parameter "a" for "{name}"') if b is None: bovera = ref.get('b/a') if bovera is not None and a is not None: b = bovera * a if crystalstructure in ['hcp', 'wurtzite']: if cubic: raise incompatible_cell(want='cubic', have=crystalstructure) if c is not None: covera = c / a elif covera is None: if xref == crystalstructure: covera = ref['c/a'] else: covera = sqrt(8 / 3) if covera is None: covera = ref.get('c/a') if c is None and covera is not None: c = covera * a if orthorhombic and crystalstructure not in ['sc', 'tetragonal', 'orthorhombic']: atoms = _orthorhombic_bulk(name, crystalstructure, a, covera, u) elif cubic and crystalstructure in ['bcc', 'cesiumchloride']: atoms = _orthorhombic_bulk(name, crystalstructure, a, covera) elif cubic and crystalstructure != 'sc': atoms = _cubic_bulk(name, crystalstructure, a) elif crystalstructure == 'sc': atoms = Atoms(name, cell=(a, a, a), pbc=True) elif crystalstructure == 'fcc': b = a / 2 atoms = Atoms(name, cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True) elif crystalstructure == 'bcc': b = a / 2 atoms = Atoms(name, cell=[(-b, b, b), (b, -b, b), (b, b, -b)], pbc=True) elif crystalstructure == 'hcp': atoms = Atoms(2 * name, scaled_positions=[(0, 0, 0), (1 / 3, 2 / 3, 0.5)], cell=[(a, 0, 0), (-0.5 * a, a * sqrt(3) / 2, 0), (0, 0, covera * a)], pbc=True) elif crystalstructure == 'diamond': atoms = bulk(2 * name, 'zincblende', a) elif crystalstructure == 'zincblende': symbol1, symbol2 = string2symbols(name) atoms = bulk(symbol1, 'fcc', a) + bulk(symbol2, 'fcc', a) atoms.positions[1] += a / 4 elif crystalstructure == 'rocksalt': symbol1, symbol2 = string2symbols(name) atoms = bulk(symbol1, 'fcc', a) + bulk(symbol2, 'fcc', a) atoms.positions[1, 0] += a / 2 elif crystalstructure == 'cesiumchloride': symbol1, symbol2 = string2symbols(name) atoms = bulk(symbol1, 'sc', a) + bulk(symbol2, 'sc', a) atoms.positions[1, :] += a / 2 elif crystalstructure == 'fluorite': symbol1, symbol2, symbol3 = string2symbols(name) atoms = \ bulk(symbol1, 'fcc', a) + \ bulk(symbol2, 'fcc', a) + \ bulk(symbol3, 'fcc', a) atoms.positions[1, :] += a / 4 atoms.positions[2, :] += a * 3 / 4 elif crystalstructure == 'wurtzite': u = u or 0.25 + 1 / 3 / covera**2 atoms = Atoms(2 * name, scaled_positions=[(0, 0, 0), (1 / 3, 2 / 3, 0.5 - u), (1 / 3, 2 / 3, 0.5), (0, 0, 1 - u)], cell=[(a, 0, 0), (-0.5 * a, a * sqrt(3) / 2, 0), (0, 0, a * covera)], pbc=True) elif crystalstructure == 'bct': from ase.lattice import BCT if basis is None: basis = ref.get('basis') if basis is not None: natoms = len(basis) lat = BCT(a=a, c=c) atoms = Atoms([name] * natoms, cell=lat.tocell(), pbc=True, scaled_positions=basis) elif crystalstructure == 'rhombohedral': atoms = _build_rhl(name, a, alpha, basis) elif crystalstructure == 'orthorhombic': atoms = Atoms(name, cell=[a, b, c], pbc=True) else: raise ValueError(f'Unknown crystal structure: {crystalstructure!r}') if magmom_per_atom is not None: magmoms = [magmom_per_atom] * len(atoms) atoms.set_initial_magnetic_moments(magmoms) if orthorhombic: assert atoms.cell.orthorhombic if cubic: assert abs(atoms.cell.angles() - 90).all() < 1e-10 return atoms
def _build_rhl(name, a, alpha, basis): from ase.lattice import RHL lat = RHL(a, alpha) cell = lat.tocell() if basis is None: # RHL: Given by A&M as scaled coordinates "x" of cell.sum(0): basis_x = reference_states[atomic_numbers[name]]['basis_x'] basis = basis_x[:, None].repeat(3, axis=1) natoms = len(basis) return Atoms([name] * natoms, cell=cell, scaled_positions=basis, pbc=True) def _orthorhombic_bulk(name, crystalstructure, a, covera=None, u=None): if crystalstructure == 'fcc': b = a / sqrt(2) atoms = Atoms(2 * name, cell=(b, b, a), pbc=True, scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)]) elif crystalstructure == 'bcc': atoms = Atoms(2 * name, cell=(a, a, a), pbc=True, scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)]) elif crystalstructure == 'hcp': atoms = Atoms(4 * name, cell=(a, a * sqrt(3), covera * a), scaled_positions=[(0, 0, 0), (0.5, 0.5, 0), (0.5, 1 / 6, 0.5), (0, 2 / 3, 0.5)], pbc=True) elif crystalstructure == 'diamond': atoms = _orthorhombic_bulk(2 * name, 'zincblende', a) elif crystalstructure == 'zincblende': s1, s2 = string2symbols(name) b = a / sqrt(2) atoms = Atoms(2 * name, cell=(b, b, a), pbc=True, scaled_positions=[(0, 0, 0), (0.5, 0, 0.25), (0.5, 0.5, 0.5), (0, 0.5, 0.75)]) elif crystalstructure == 'rocksalt': s1, s2 = string2symbols(name) b = a / sqrt(2) atoms = Atoms(2 * name, cell=(b, b, a), pbc=True, scaled_positions=[(0, 0, 0), (0.5, 0.5, 0), (0.5, 0.5, 0.5), (0, 0, 0.5)]) elif crystalstructure == 'cesiumchloride': atoms = Atoms(name, cell=(a, a, a), pbc=True, scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)]) elif crystalstructure == 'wurtzite': u = u or 0.25 + 1 / 3 / covera**2 atoms = Atoms(4 * name, cell=(a, a * 3**0.5, covera * a), scaled_positions=[(0, 0, 0), (0, 1 / 3, 0.5 - u), (0, 1 / 3, 0.5), (0, 0, 1 - u), (0.5, 0.5, 0), (0.5, 5 / 6, 0.5 - u), (0.5, 5 / 6, 0.5), (0.5, 0.5, 1 - u)], pbc=True) else: raise incompatible_cell(want='orthorhombic', have=crystalstructure) return atoms def _cubic_bulk(name: str, crystalstructure: str, a: float) -> Atoms: if crystalstructure == 'fcc': atoms = Atoms(4 * name, cell=(a, a, a), pbc=True, scaled_positions=[(0, 0, 0), (0, 0.5, 0.5), (0.5, 0, 0.5), (0.5, 0.5, 0)]) elif crystalstructure == 'diamond': atoms = _cubic_bulk(2 * name, 'zincblende', a) elif crystalstructure == 'zincblende': atoms = Atoms(4 * name, cell=(a, a, a), pbc=True, scaled_positions=[(0, 0, 0), (0.25, 0.25, 0.25), (0, 0.5, 0.5), (0.25, 0.75, 0.75), (0.5, 0, 0.5), (0.75, 0.25, 0.75), (0.5, 0.5, 0), (0.75, 0.75, 0.25)]) elif crystalstructure == 'rocksalt': atoms = Atoms(4 * name, cell=(a, a, a), pbc=True, scaled_positions=[(0, 0, 0), (0.5, 0, 0), (0, 0.5, 0.5), (0.5, 0.5, 0.5), (0.5, 0, 0.5), (0, 0, 0.5), (0.5, 0.5, 0), (0, 0.5, 0)]) elif crystalstructure == 'fluorite': atoms = Atoms( 4 * name, cell=(a, a, a), pbc=True, scaled_positions=[ (0.00, 0.00, 0.00), (0.25, 0.25, 0.25), (0.75, 0.75, 0.75), (0.00, 0.50, 0.50), (0.25, 0.75, 0.75), (0.75, 0.25, 0.25), (0.50, 0.00, 0.50), (0.75, 0.25, 0.75), (0.25, 0.75, 0.25), (0.50, 0.50, 0.00), (0.75, 0.75, 0.25), (0.25, 0.25, 0.75), ], ) else: raise incompatible_cell(want='cubic', have=crystalstructure) return atoms