Frequently Asked Questions

General

Citation: How should I cite GPAW?

If you find GPAW useful in your research please cite the original reference:

J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen
Phys. Rev. B 71, 035109 (2005)

and the major GPAW review:

J. Enkovaara, C. Rostgaard, J. J. Mortensen et al.
J. Phys.: Condens. Matter 22, 253202 (2010)

together with the ASE review (see How should I cite ASE?).

Please also cite those of the following that are relevant to you work:

Citations of the GPAW method papers

_images/citations.png

(updated on 18 Mar 2021)

The total number of citations above is the number of publications citing at least one of the other papers, not the sum of all citation counts.

BibTex (doc/GPAW.bib):

@article{Mortensen2005,
  author = {Mortensen, J. J. and Hansen, L. B. and Jacobsen, K. W.},
  title = {Real-space grid implementation of the projector augmented wave method},
  journal = {Phys. Rev. B},
  volume = {71},
  number = {3},
  pages = {035109},
  year = {2005},
  doi = {10.1103/PhysRevB.71.035109}
}

@article{Enkovaara2010,
  author = {Enkovaara, J. and Rostgaard, C. and Mortensen, J. J. and
            Chen, J. and Du{\l}ak, M. and Ferrighi, L. and
            Gavnholt, J. and Glinsvad, C. and Haikola, V. and
            Hansen, H. A. and Kristoffersen, H. H. and Kuisma, M. and
            Larsen, A. H. and Lehtovaara, L. and Ljungberg, M. and
            Lopez-Acevedo, O. and Moses, P. G. and Ojanen, J. and
            Olsen, T. and Petzold, V. and Romero, N. A. and
            Stausholm-M{\o}ller, J. and Strange, M. and
            Tritsaris, G. A. and Vanin, M. and Walter, M. and
            Hammer, B. and H{\"a}kkinen, H. and Madsen, G. K. H. and
            Nieminen, R. M. and N{\o}rskov, J. K. and Puska, M. and
            Rantala, T. T. and Schi{\o}tz, J. and Thygesen, K. S. and
            Jacobsen, K. W.},
  title = {Electronic structure calculations with {GPAW}: a real-space implementation of the projector augmented-wave method},
  journal = {J. Phys.: Condens. Matter},
  volume = {22},
  number = {25},
  pages = {253202},
  year = {2010},
  doi = {10.1088/0953-8984/22/25/253202}
}

@article{Lehtola2018,
  author = {Susi Lehtola and Conrad Steigemann and Micael
                  J. T. Oliveira and Miguel A. L. Marques},
  title = {Recent developments in libxc -- A comprehensive library of functionals for density functional theory},
  journal = {SoftwareX},
  volume = {7},
  pages = {1-5},
  year = {2018},
  issn = {2352-7110},
  url = {https://www.sciencedirect.com/science/article/pii/S2352711017300602},
  keywords = {Density functional theory, Exchange–correlation, Local
                  density approximations, Generalized gradient
                  approximations, meta-GGA approximations},
  abstract = {libxc is a library of exchange–correlation functionals
                  for density-functional theory. We are concerned with
                  semi-local functionals (or the semi-local part of
                  hybrid functionals), namely local-density
                  approximations, generalized-gradient approximations,
                  and meta-generalized-gradient
                  approximations. Currently we include around 400
                  functionals for the exchange, correlation, and the
                  kinetic energy, spanning more than 50 years of
                  research. Moreover, libxc is by now used by more
                  than 20 codes, not only from the atomic, molecular,
                  and solid-state physics, but also from the quantum
                  chemistry communities.},
  doi = {10.1016/j.softx.2017.11.002}
}

@article{Walter2008,
  author = {Walter, Michael and H{\"a}kkinen, Hannu and Lehtovaara, Lauri and
            Puska, Martti and Enkovaara, Jussi and Rostgaard, Carsten and
            Mortensen, Jens J{\o}rgen},
  title = {Time-dependent density-functional theory in the projector augmented-wave method},
  journal = {J. Chem. Phys.},
  volume = {128},
  number = {24},
  pages = {244101},
  year = {2008},
  doi = {10.1063/1.2943138}
}

@article{Larsen2009,
  author = {Larsen, A. H. and Vanin, M.  and Mortensen, J. J. and
            Thygesen, K. S. and Jacobsen, K. W.},
  title = {Localized atomic basis set in the projector augmented wave method},
  journal = {Phys. Rev. B},
  volume = {80},
  number = {19},
  pages = {195112},
  year = {2009},
  doi = {10.1103/PhysRevB.80.195112}
}

@article{Yan2011,
  author = {Yan, Jun and Mortensen, Jens J. and Jacobsen, Karsten W. and
            Thygesen, Kristian S.},
  title = {Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces},
  journal = {Phys. Rev. B},
  volume = {83},
  number = {24},
  pages = {245122},
  year = {2011},
  doi = {10.1103/PhysRevB.83.245122}
}

@article{Huser2013,
  author = {H\"user, Falco and Olsen, Thomas and Thygesen, Kristian S.},
  title = {Quasiparticle GW calculations for solids, molecules, and two-dimensional materials},
  journal = {Phys. Rev. B},
  volume = {87},
  number = {23},
  pages = {235132},
  year = {2013},
  doi = {10.1103/PhysRevB.87.235132}
}

@article{Held2014,
  author = {Held, Alexander and Walter, Michael},
  title = {Simplified continuum solvent model with a smooth cavity based on volumetric data},
  journal = {J. Chem. Phys.},
  volume = {141},
  number = {17},
  pages = {174108},
  year = {2014},
  doi = {10.1063/1.4900838}
}

@article{Kuisma2015,
  author = {Kuisma, M. and Sakko, A. and Rossi, T. P. and Larsen, A. H. and Enkovaara, J. and Lehtovaara, L. and Rantala, T. T.},
  title = {Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations},
  journal = {Phys. Rev. B},
  volume = {91},
  number = {11},
  pages = {115431},
  year = {2015},
  doi = {10.1103/PhysRevB.91.115431}
}

@article{Rossi2017,
  author = {Rossi, Tuomas P. and Kuisma, Mikael and Puska, Martti J. and
            Nieminen, Risto M. and Erhart, Paul},
  title = {Kohn--Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations},
  journal = {J. Chem. Theory Comput.},
  volume = {13},
  number = {10},
  pages = {4779-4790},
  year = {2017},
  doi = {10.1021/acs.jctc.7b00589}
}

@article{Kastlunger2018,
	author = {Kastlunger, Georg and Lindgren, Per and Peterson, Andrew A.},
	title = {Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces},
	journal = {The Journal of Physical Chemistry C},
	volume = {122},
	number = {24},
	pages = {12771-12781},
	year = 2018,
	doi = {10.1021/acs.jpcc.8b02465},
}

How do you pronounce GPAW?

In English: “geepaw” with a long “a”.

In Danish: Først bogstavet “g”, derefter “pav”: “g-pav”.

In Finnish: supisuomalaisittain “kee-pav”.

In Polish: “gyeh” jak “Gie”rek, “pav” jak paw: “gyeh-pav”.

Compiling the C-code

For architecture dependent settings see the Platforms and architectures page.

Compilation of the C part failed:

[~]$ python2.4 setup.py build_ext
building '_gpaw' extension
pgcc -fno-strict-aliasing -DNDEBUG -O2 -g -pipe -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -m64 -D_GNU_SOURCE -fPIC -fPIC -I/usr/include/python2.4 -c c/localized_functions.c -o build/temp.linux-x86_64-2.4/c/localized_functions.o -Wall -std=c99
pgcc-Warning-Unknown switch: -fno-strict-aliasing
PGC-S-0040-Illegal use of symbol, _Complex (/usr/include/bits/cmathcalls.h: 54)

You are probably using another compiler, than was used for compiling python. Undefine the environment variables CC, CFLAGS and LDFLAGS with:

# sh/bash users:
unset CC; unset CFLAGS; unset LDFLAGS
# csh/tcsh users:
unsetenv CC; unsetenv CFLAGS; unsetenv LDFLAGS

and try again.

Calculation does not converge

Consult the Convergence Issues page.

Poisson solver did not converge!

If you are doing a spin-polarized calculation for an isolated molecule, then you should set the Fermi temperature to a low value.

You can also try to set the number of grid points to be divisible by 8. Consult the Notes on performance page.