Bulk tests

Warning: this page is outdated. For performance of GPAW for bulk systems please refer to Delta Codes DFT.

Lattice constants (a) in Å and bulk moduli (B) in GPa calculated using PBE functional in GPAW revision 2041.

compound structure GPAW a ref. a error [%] GPAW B ref. B error [%]
Ni fcc 3.520 3.487 [01] 0.9 199.6 189.0 [01] 5.6
Pd fcc 3.952 3.940 [02] 0.3 165.3 180.4 [02] -8.4
Pt fcc 3.981 3.999 [03] -0.5 243.8 234.0 [03] 4.2
La hcp 3.841 3.777 [02] 1.7 28.5 25.8 [02] 10.5
Na bcc 4.195 4.200 [04] -0.1 7.8 7.6 [05] 2.6
Nb bcc 3.315 3.312 [03] 0.1 178.8 171.0 [03] 4.6
Mg hcp 3.197 3.190 [06] 0.2 36.3 34.0 [07] 6.8
Li bcc 3.436 3.438 [04] -0.1 14.2 13.7 [04] 3.6
Pb fcc 5.045 5.038 [08] 0.1 38.7 39.5 [08] -2.0
Rb bcc 5.668 5.670 [03] -0.0 3.2 2.8 [03] 14.3
Rh fcc 3.857 3.830 [04] 0.7 252.8 263.7 [02] -4.1
Ta bcc 3.333 3.328 [03] 0.2 200.0 191.0 [03] 4.7
Ba bcc 5.026 5.024 [03] 0.0 8.8 8.7 [03] 1.1
Fe bcc 2.842 2.860 [09] -0.6 192.5 198.0 [09] -2.8
Mo bcc 3.168 3.162 [02] 0.2 269.4 260.0 [03] 3.6
C diamond 3.572 3.575 [03] -0.1 436.2 431.0 [04] 1.2
K bcc 5.285 5.296 [02] -0.2 3.6 3.6 [02] 0.0
Si diamond 5.474 5.459 [02] 0.3 89.3 87.8 [02] 1.7
W bcc 3.203 3.184 [05] 0.6 303.4 290.0 [03] 4.6
V bcc 3.017 3.001 [03] 0.5 185.3 183.0 [03] 1.3
Zn hcp 2.664 2.650 [06] 0.5 73.7 71.0 [06] 3.8
Co hcp 2.495 2.496 [02] -0.0 220.2 220.0 [02] 0.1
Ag fcc 4.166 4.147 [04] 0.5 86.5 91.0 [03] -4.9
Ca fcc 5.538 5.530 [03] 0.1 17.6 17.3 [03] 1.7
Ir fcc 3.890 3.895 [03] -0.1 345.4 328.0 [03] 5.3
Al fcc 4.043 4.039 [05] 0.1 78.7 76.5 [02] 2.9
Cd hcp 3.036 3.030 [06] 0.2 43.6 53.0 [06] -17.7
Ge diamond 5.767 5.758 [05] 0.2 62.1 59.4 [02] 4.5
Au fcc 4.176 4.150 [02] 0.6 137.9 147.1 [02] -6.3
Cs bcc 6.159 6.134 [10] 0.4 1.9 1.9 [10] 0.0
Cr bcc 2.845 2.836 [11] 0.3 256.1 261.0 [11] -1.9
Cu fcc 3.643 3.628 [02] 0.4 138.5 143.9 [02] -3.8
LaN rocksalt 5.348 5.324 [03] 0.5 123.3 123.0 [03] 0.2
LiCl rocksalt 5.155 5.167 [03] -0.2 31.9 32.2 [03] -0.9
MgO rocksalt 4.267 4.259 [02] 0.2 150.3 147.8 [02] 1.7
NaCl rocksalt 5.687 5.714 [03] -0.5 24.5 23.7 [03] 3.4
GaN zincblende 4.605 4.551 [03] 1.2 183.9 173.0 [03] 6.3
AlAs zincblende 5.737 5.734 [03] 0.1 68.3 67.0 [03] 1.9
BP zincblende 4.551 4.553 [03] -0.0 163.2 162.0 [03] 0.7
FeAl cesiumchloride 2.883 2.869 [03] 0.5 177.1 180.0 [03] -1.6
BN zincblende 3.626 3.629 [03] -0.1 372.1 373.0 [03] -0.2
LiF rocksalt 4.097 4.064 [02] 0.8 68.4 71.7 [02] -4.6
NaF rocksalt 4.691 4.709 [03] -0.4 47.4 44.5 [03] 6.5
SiC zincblende 4.389 4.381 [02] 0.2 212.3 211.8 [02] 0.2
ZrC rocksalt 4.716 4.715 [03] 0.0 225.2 222.0 [03] 1.4
ZrN rocksalt 4.605 4.602 [03] 0.1 246.2 250.0 [03] -1.5
AlN zincblende 4.414 4.406 [03] 0.2 193.4 193.0 [03] 0.2
VN rocksalt 4.166 4.125 [03] 1.0 320.1 312.0 [03] 2.6
NbC rocksalt 4.519 4.491 [03] 0.6 315.4 301.0 [03] 4.8
GaP zincblende 5.545 5.514 [03] 0.6 78.5 77.0 [03] 1.9
AlP zincblende 5.510 5.513 [03] -0.1 80.9 82.6 [03] -2.1
BAs zincblende 4.816 4.816 [03] 0.0 130.7 132.0 [03] -1.0
GaAs zincblende 5.767 5.749 [02] 0.3 61.2 60.9 [02] 0.5
MgS rocksalt 5.236 5.238 [03] -0.0 73.5 74.4 [03] -1.2
ZnO rocksalt 4.339 4.336 [03] 0.1 166.7 166.0 [03] 0.4
NiAl cesiumchloride 2.897 2.894 [03] 0.1 164.0 159.0 [03] 3.1
CaO rocksalt 4.853 4.841 [03] 0.2 103.6 105.0 [03] -1.3
               

References

[01](1, 2)
Degree of localization of the exchange-correlation hole and its influence on the ground-state (structural and magnetic) properties of d metals”, E. L. P. y Blancá, C. O. Rodríguez, J. Shitu and D. L. Novikov, J. Phys.: Cond. Matter 13, 9463-9470 (2001)
http://www.ingentaconnect.com/content/iop/jphyscm/2001/00000013/00000042/art00307
[02](1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)

“Georg Madsen - private communication

[03](1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62)
Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional” Fabien Tran, Robert Laskowski, Peter Blaha, and Karlheinz Schwarz, Phys. Rev. B, 75, 115131 (2007)
http://dx.doi.org/10.1103/PhysRevB.75.115131
[04](1, 2, 3, 4, 5, 6)
Screened hybrid density functionals applied to solids”,
J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán, J. Chem. Phys. 124, 154709 (2006) http://dx.doi.org/10.1063/1.2187006
[05](1, 2, 3, 4)
Molecular and Solid-State Tests of Density Functional
Approximations: LSD, GGAs, and Meta-GGAs”, S. Kurth, J. P. Perdew and P. Blaha, Int. J. Quant. Chem. 75, 889-909 (1999) http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5%3C889::AID-QUA54%3E3.0.CO;2-8
[06](1, 2, 3, 4, 5)

http://dx.doi.org/10.1103/PhysRevB.75.205123

[07]

http://dx.doi.org/10.1016/j.susc.2005.12.008

[08](1, 2)
First-principles study of low-index surfaces of lead
“D. Yu and M. Scheffler, Phys. Rev. B 70, 155417 (2004) http://dx.doi.org/10.1103/PhysRevB.70.155417
[09](1, 2)

http://dx.doi.org/10.1063/1.2121547

[10](1, 2)

http://www.pwscf.org/pseudo/1.3/html/Cs.html

[11](1, 2)

http://dx.doi.org/10.1103/PhysRevB.65.184432