Bulk tests

Warning: this page is outdated. For performance of GPAW for bulk systems please refer to Delta Codes DFT.

Lattice constants (a) in Å and bulk moduli (B) in GPa calculated using PBE functional in GPAW revision 2041.

compound

structure

GPAW a

ref. a

error [%]

GPAW B

ref. B

error [%]

Ni

fcc

3.520

3.487 01

0.9

199.6

189.0 01

5.6

Pd

fcc

3.952

3.940 02

0.3

165.3

180.4 02

-8.4

Pt

fcc

3.981

3.999 03

-0.5

243.8

234.0 03

4.2

La

hcp

3.841

3.777 02

1.7

28.5

25.8 02

10.5

Na

bcc

4.195

4.200 04

-0.1

7.8

7.6 05

2.6

Nb

bcc

3.315

3.312 03

0.1

178.8

171.0 03

4.6

Mg

hcp

3.197

3.190 06

0.2

36.3

34.0 07

6.8

Li

bcc

3.436

3.438 04

-0.1

14.2

13.7 04

3.6

Pb

fcc

5.045

5.038 08

0.1

38.7

39.5 08

-2.0

Rb

bcc

5.668

5.670 03

-0.0

3.2

2.8 03

14.3

Rh

fcc

3.857

3.830 04

0.7

252.8

263.7 02

-4.1

Ta

bcc

3.333

3.328 03

0.2

200.0

191.0 03

4.7

Ba

bcc

5.026

5.024 03

0.0

8.8

8.7 03

1.1

Fe

bcc

2.842

2.860 09

-0.6

192.5

198.0 09

-2.8

Mo

bcc

3.168

3.162 02

0.2

269.4

260.0 03

3.6

C

diamond

3.572

3.575 03

-0.1

436.2

431.0 04

1.2

K

bcc

5.285

5.296 02

-0.2

3.6

3.6 02

0.0

Si

diamond

5.474

5.459 02

0.3

89.3

87.8 02

1.7

W

bcc

3.203

3.184 05

0.6

303.4

290.0 03

4.6

V

bcc

3.017

3.001 03

0.5

185.3

183.0 03

1.3

Zn

hcp

2.664

2.650 06

0.5

73.7

71.0 06

3.8

Co

hcp

2.495

2.496 02

-0.0

220.2

220.0 02

0.1

Ag

fcc

4.166

4.147 04

0.5

86.5

91.0 03

-4.9

Ca

fcc

5.538

5.530 03

0.1

17.6

17.3 03

1.7

Ir

fcc

3.890

3.895 03

-0.1

345.4

328.0 03

5.3

Al

fcc

4.043

4.039 05

0.1

78.7

76.5 02

2.9

Cd

hcp

3.036

3.030 06

0.2

43.6

53.0 06

-17.7

Ge

diamond

5.767

5.758 05

0.2

62.1

59.4 02

4.5

Au

fcc

4.176

4.150 02

0.6

137.9

147.1 02

-6.3

Cs

bcc

6.159

6.134 10

0.4

1.9

1.9 10

0.0

Cr

bcc

2.845

2.836 11

0.3

256.1

261.0 11

-1.9

Cu

fcc

3.643

3.628 02

0.4

138.5

143.9 02

-3.8

LaN

rocksalt

5.348

5.324 03

0.5

123.3

123.0 03

0.2

LiCl

rocksalt

5.155

5.167 03

-0.2

31.9

32.2 03

-0.9

MgO

rocksalt

4.267

4.259 02

0.2

150.3

147.8 02

1.7

NaCl

rocksalt

5.687

5.714 03

-0.5

24.5

23.7 03

3.4

GaN

zincblende

4.605

4.551 03

1.2

183.9

173.0 03

6.3

AlAs

zincblende

5.737

5.734 03

0.1

68.3

67.0 03

1.9

BP

zincblende

4.551

4.553 03

-0.0

163.2

162.0 03

0.7

FeAl

cesiumchloride

2.883

2.869 03

0.5

177.1

180.0 03

-1.6

BN

zincblende

3.626

3.629 03

-0.1

372.1

373.0 03

-0.2

LiF

rocksalt

4.097

4.064 02

0.8

68.4

71.7 02

-4.6

NaF

rocksalt

4.691

4.709 03

-0.4

47.4

44.5 03

6.5

SiC

zincblende

4.389

4.381 02

0.2

212.3

211.8 02

0.2

ZrC

rocksalt

4.716

4.715 03

0.0

225.2

222.0 03

1.4

ZrN

rocksalt

4.605

4.602 03

0.1

246.2

250.0 03

-1.5

AlN

zincblende

4.414

4.406 03

0.2

193.4

193.0 03

0.2

VN

rocksalt

4.166

4.125 03

1.0

320.1

312.0 03

2.6

NbC

rocksalt

4.519

4.491 03

0.6

315.4

301.0 03

4.8

GaP

zincblende

5.545

5.514 03

0.6

78.5

77.0 03

1.9

AlP

zincblende

5.510

5.513 03

-0.1

80.9

82.6 03

-2.1

BAs

zincblende

4.816

4.816 03

0.0

130.7

132.0 03

-1.0

GaAs

zincblende

5.767

5.749 02

0.3

61.2

60.9 02

0.5

MgS

rocksalt

5.236

5.238 03

-0.0

73.5

74.4 03

-1.2

ZnO

rocksalt

4.339

4.336 03

0.1

166.7

166.0 03

0.4

NiAl

cesiumchloride

2.897

2.894 03

0.1

164.0

159.0 03

3.1

CaO

rocksalt

4.853

4.841 03

0.2

103.6

105.0 03

-1.3

References

01(1,2)
Degree of localization of the exchange-correlation hole and its influence on the ground-state (structural and magnetic) properties of d metals”, E. L. P. y Blancá, C. O. Rodríguez, J. Shitu and D. L. Novikov, J. Phys.: Cond. Matter 13, 9463-9470 (2001)

http://www.ingentaconnect.com/content/iop/jphyscm/2001/00000013/00000042/art00307

02(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)

“Georg Madsen - private communication

03(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)
Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional” Fabien Tran, Robert Laskowski, Peter Blaha, and Karlheinz Schwarz, Phys. Rev. B, 75, 115131 (2007)

http://dx.doi.org/10.1103/PhysRevB.75.115131

04(1,2,3,4,5,6)
Screened hybrid density functionals applied to solids”,

J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán, J. Chem. Phys. 124, 154709 (2006) http://dx.doi.org/10.1063/1.2187006

05(1,2,3,4)
Molecular and Solid-State Tests of Density Functional

Approximations: LSD, GGAs, and Meta-GGAs”, S. Kurth, J. P. Perdew and P. Blaha, Int. J. Quant. Chem. 75, 889-909 (1999) http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5%3C889::AID-QUA54%3E3.0.CO;2-8

06(1,2,3,4,5)

http://dx.doi.org/10.1103/PhysRevB.75.205123

07

http://dx.doi.org/10.1016/j.susc.2005.12.008

08(1,2)
First-principles study of low-index surfaces of lead

“D. Yu and M. Scheffler, Phys. Rev. B 70, 155417 (2004) http://dx.doi.org/10.1103/PhysRevB.70.155417

09(1,2)

http://dx.doi.org/10.1063/1.2121547

10(1,2)

http://www.pwscf.org/pseudo/1.3/html/Cs.html

11(1,2)

http://dx.doi.org/10.1103/PhysRevB.65.184432