Source code for gpaw.spline

# Copyright (C) 2003  CAMP
# Please see the accompanying LICENSE file for further information.

import numpy as np

from gpaw import debug
from gpaw.utilities import is_contiguous
import _gpaw

[docs]class Spline: def __init__(self, l, rmax, f_g): """Spline object The integer l gives the angular momentum quantum number and the list contains the spline values from r=0 to r=rcut. The array f_g gives the radial part of the function on the grid. The radial function is multiplied by a real solid spherical harmonics (r^l * Y_lm). """ assert rmax > 0.0 f_g = np.array(f_g, float) # Copy so we don't change the values of the input array f_g[-1] = 0.0 self.spline = _gpaw.Spline(l, rmax, f_g) self.l = l
[docs] def get_cutoff(self): """Return the radial cutoff.""" return self.spline.get_cutoff()
[docs] def get_angular_momentum_number(self): """Return the angular momentum quantum number.""" return self.spline.get_angular_momentum_number()
def __repr__(self): return ('Spline(l={}, rmax={:.2f}, ...)' .format(self.get_angular_momentum_number(), self.get_cutoff()))
[docs] def get_value_and_derivative(self, r): """Return the value and derivative.""" return self.spline.get_value_and_derivative(r)
def __call__(self, r): assert r >= 0.0 return self.spline(r) def map(self, r_x): return np.vectorize(self, [float])(r_x) def get_functions(self, gd, start_c, end_c, spos_c): h_cv = gd.h_cv # start_c is the new origin so we translate gd.beg_c to start_c origin_c = np.array([0, 0, 0]) pos_v =, gd.cell_cv) -, h_cv) A_gm, G_b = _gpaw.spline_to_grid(self.spline, origin_c, end_c - start_c, pos_v, h_cv, end_c - start_c, origin_c) if debug: assert G_b.ndim == 1 and G_b.shape[0] % 2 == 0 assert is_contiguous(G_b, np.intc) assert A_gm.shape[:-1] == np.sum(G_b[1::2] - G_b[::2]) indices_gm, ng, nm = self.spline.get_indices_from_zranges(start_c, end_c, G_b) shape = (nm,) + tuple(end_c - start_c) work_mB = np.zeros(shape, dtype=A_gm.dtype) np.put(work_mB, indices_gm, A_gm) return work_mB