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Abstract

This thesis concerns theoretical-computational work within the framework

of Density Functional Theory. A localized basis set is included in the Pro-

jector Augmented Wave formalism and implemented in its real-space grid-

based version GPAW. This enables fast and efficient calculations done with

the same approximations of the grid-based implementation. The comple-

mentarity of the two schemes can then be combined in a very flexible way,

driven by the specific application. The presented benchmark calculations

show an overall good accuracy with respect to the grid results.
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Chapter 1

Introduction

In the early 1930s physicists were formally aware of the quantum theory,
that is to say they had the set of equations governing systems of many
electrons. Together with chemists, they developed several methods and ap-
proximations, but it was only the Density Functional Theory (DFT) [15]
[22], pioneered by W. Kohn, P. Hohenberg and L. Sham, which paved the
way for accurate quantum mechanical calculations at a reasonable compu-
tational cost. Inspired by basics ideas of solid state physics, it is a formally
exact quantum theory that has become the method of choice for calcula-
tions on realistic systems. In recent years it has also become popular in the
quantum chemistry community, due to the improvement in the accuracy of
its approximated functionals.

Thanks also to the enormous increase in computer power, density func-
tional calculations are now becoming feasible on large scale systems. This
new computational capability opens up great perspective in many fields
and disciplines where atomic-scale understanding would be relevant. Large
biomolecules, nano-materials and devices, complex chemical reactions are
few examples.

Many different implementations of the theory are today available in the
literature. Most notably the Projector Augmented Wave (PAW) method [5]
is an efficient generalization of both the pseudopotential and the augmented
waves methods providing an elegant framework for large calculations with
all-electron quality.

The aim of this work is to enable density functional calculations by means
of efficient local basis sets at the level of the PAW theory. The PAW method
was already implemented in a real-space grid version in the GPAW code [17]
[1]. The PAW method itself is already very efficient compared to traditional
all-electron approaches. The combination with a local basis set is then
promising for treating complex systems of many electrons still preserving
all-electron accuracy. A unique feature of this work is that the possibility to
carry out basis-set calculations shares the exact same approximations of the

1



2 1. Introduction

full-grid counterpart. This provides a great flexibility, allowing to switch be-
tween basis-set and grid representation of the wavefunction thus exploiting
the complementarity of the two schemes. For instance the grid provides the
natural complete basis set limit, and thus very accurate calculations while a
minimal basis-set could be used to obtain good initial guesses as well as fast
results. For instance one could efficiently relax complex structures, and then
switch to the grid for possible last iterations in the minimization procedure.
Furthermore, the localized basis is well suited for quantum transport calcula-
tions, linear-scaling computation schemes, molecular dynamics simulations,
as well as for analysis purposes.

In this work, the derivation of the equations needed to handle a basis set
in the PAW formalism has been carried out. The implementation has been
done in the GPAW code and some benchmark results are presented.

Outline of the thesis

The remainder of this thesis is organized as follows:

Chapter 2 provides a brief theoretical background in Density Functional
Theory (DFT).

Chapter 3 introduces the Projector Augmented Wave (PAW) formalism,
which is the theoretical framework of this work.

Chapter 4 addresses some general issues related to different ways of im-
plementing the theory.

Chapter 5 presents how a localized basis is included in the PAW formalism.
This contains the changes that were needed in the real space code in
order to handle a finite basis.

Chapter 6 contains and discusses numerical results. This is done through
tests and benchmark calculations on several physical systems.

Units

Atomic units are used throughout this thesis. In this units the length unit
is the Bohr radius a0, the charge unit is the electron charge e and the mass
unit is the mass of the electron me, i.e. me = e = h̄ = a0 = 1.



Chapter 2

The Many-Body Problem

Atoms, molecules, clusters and condensed matter systems consist of mu-
tually interacting electrons and nuclei. The behavior of such a quantum
system is then described by a Hamiltonian operator which depends on both
the electronic and ionic degrees of freedom. In coordinate representation this
means that the wave function depends on both the nuclear and electronic
spatial coordinates.

The first major simplification is brought by the Born-Oppenheimer ap-
proximation, which allows to decouple the electronic and ionic part because
of the large difference in mass between the electrons me and the ions MI ,
10−3 ≤ me/MI ≤ −10−5. The electron problem can thus be reduced to
a N -electron Hamiltonian in which the nuclei are assumed to be fixed at
some given positions {RI}, i.e. they enter as external parameters. In the
non-relativistic approximation it reads

Ĥ = −1
2

N∑
i=1

∇2
i −

∑
i

∑
I

ZI

|ri −RI|
−

N∑
i<j

1
|ri − rj|

= T̂ + V̂ext + V̂e−e

(2.1)

where ri is the position of electron i and ZI is the atomic number of nu-
cleus I. The first term in (2.1) is the kinetic energy operator, the second
term is the electrostatic potential from the ions and the last term is the
electron-electron interaction due to the Coulomb repulsion between elec-
trons. We note that V̂ext could also include any other external contribution
(e.g. applied electromagnetic fields) besides the ionic potential. The elec-
tronic many-body wave function must then obey the Schrödinger equation

ĤΨ(r1σ1, r2σ2, ..., rNσN , ) = EΨ(r1σ1, r2σ2, ..., rNσN , ) (2.2)

where σi is the spin variable for electron i. It should be noted that all the
many-body effects are contained in the two-body operator V̂e−e, which is
then the most cumbersome term to deal with in realistic calculations.

3



4 2. The Many-Body Problem

Solving (2.2) is the fundamental issue in the theory of the electronic
structure of matter, and many ways of attacking the problem have been de-
veloped, based on different approximations. For sufficiently small molecules,
wavefunction-based methods are feasible and give excellent results. They
usually rely on the minimization of a suitable energy functional within the
space of a chosen set of approximations for the real wave-function. Many-
body perturbation theory is another approach, but extremely expensive nu-
merical methods are required for realistic systems. Quantum Monte Carlo
simulations are also computationally very demanding, restricting them only
to systems with a few electrons.

A somewhat different approach is provided by the Density Functional
Theory (DFT), which has became the basis of much of the computational
many-body physics we see today.

2.1 Density Functional Theory

The fundamental laws necessary for the mathematical treat-
ment of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty lies only in the fact
that application of these laws leads to equations that are too
complex to be solved.

This is from P.A.M Dirac, after the Schrödinger equation had been written
and applied to the simplest possible systems. Although much progress has
been made in finding approximate solutions, Dirac’s point is practically still
valid today if we consider solving directly the Schrödinger equation. This is
where the Density Functional Theory comes in as an alternative approach
to the theory of electronic structure where the electron density n(r), rather
than the many-body wave function Ψ(r1σ1, r2σ2, ..., rNσN ), plays the main
role [21]. This is remarkably important both numerically and from a con-
ceptual point of view, since it represents an exact ground-state quantum
theory equivalent to the Schrödinger approach. For the pioneering work in
this field Walter Kohn was indeed awarded the Nobel Prize in Chemistry in
1998, shared with John Pople.

Nevertheless, although in principle exact, the theory requires a universal
functional1 F [n(r)] which is in general unknown and must then be approxi-
mated.

2.1.1 Hohenberg-Kohn theorems

The formal starting point is the work by Hohenberg and Kohn (HK) in 1964
[15]

1i.e. which applies to all electronic systems in their ground state, no matter what the
external potential is.



2.1. Density Functional Theory 5

Theorem 2.1.1 (Hohenberg-Kohn 1,1964) The ground state density n(r)
of a many-body quantum system in some external potential vext(r) deter-
mines this potential uniquely.

which formally enables using the three-dimensional (real) function n(r) in-
stead of the 3N-dimensional (complex) many-body wave function Ψ(r1, r2, ..., rn)
as the basic variable. In other words, all physical properties derivable from a
given Hamiltonian through the solution of the time-independent Schrödinger
equation are determined by n(r). This includes the ground state energy
E[n(r)], among others. More precisely, all physical observables can in prin-
ciple be expressed as functionals of the electronic charge-density.

The second major ingredient is the existence of a variational principle
for the energy functional:

Theorem 2.1.2 (Hohenberg-Kohn 2,1964) For any trial density n(r)
it holds E0 ≤ E[n(r)], where E0 is the ground-state energy for the system.

In other words, the minimum value of the total-energy functional E[n(r)]
is the ground state energy of the system, and the density which yields its
minimum value is exactly the single particle ground-state density.

The explicit form of this energy functional reads

E[n] =
∫
v(r)n(r)dr + F [n], (2.3)

where the universal functional

F [n] =
1
2

∫∫
n(r)n(r′)
|r− r′|

drdr′ +G[n], (2.4)

is often separated into the classical Coulomb term due to the charged elec-
trons and the new universal functional G[n].

2.1.2 Kohh-Sham theory

Although providing the ultimate theoretical foundation of DFT, the HK
work of 1964 does not propose a simple way to solve the many-body problem.
Such a scheme was in fact provided by the work of Kohn and Sham in 1965
[22]. The basic idea is to map the system of interacting electrons onto a
non-interacting system with the same density, so that the problem can be
cast in the form of single-particle equations. This is achieved in the spirit,
and as an extension, of the Thomas-Fermi model, which can be considered
the first density functional method.
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Thomas-Fermi model

This first density-functional method was proposed independently by Thomas
and Fermi in 1927 and 1928 [36][13]. The universal functional F TF [n(r)] is
written as

F TF [n] = CF

∫
n(r)5/3dr +

1
2

∫∫
n(r)n(r′)
|r− r′|

drdr′ (2.5)

where the kinetic energy is approximated by that of a non-interacting ho-
mogeneous electron gas, and the Coulomb interaction by the Hartree term
so that correlation is neglected.

The appealing feature of the Thomas-Fermi (TF) model is the fact that
the energy functional is expressed explicitly in terms of the density by a
simple one-to-one mapping. Unfortunately, although useful for obtaining
qualitative trends, it should not be used when quantitative predictions on
realistic systems are desired. The main explanations for its failures come
from the inaccurate approximation of the kinetic energy as a density func-
tional, since the kinetic energy is responsible for most of the total energy in
a Coulombic system.

Kohn-Sham equations

The TF idea of obtaining the ground state kinetic energy from a non-
interacting system is also the starting point for the Kohn-Sham (KS) scheme.
For any interacting ground state density n0(r) construct a corresponding
non-interacting system in some effective potential Vs such that the non-
interacting Hamiltonian Hs = T +Vs produce the same ground state density
n0(r)

Es[n] = Ts[n] +
∫
vs(r)n(r)dr. (2.6)

We know from the HK theory that

E[n] =
∫
vext(r)n(r)dr +

1
2

∫∫
n(r)n(r′)
|r− r′|

drdr′ +G[n] (2.7)

=
∫
vext(r)n(r)dr + UH [n] +G[n], (2.8)

and we now write the universal functional as

G[n] = Ts[n] + Exc[n]. (2.9)

where Ts[n] is the kinetic energy of a system of non-interacting electrons
with density n(r) and Exc[n] is the definition of the exchange and correlation
energy of the corresponding interacting system which we will discuss later.
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The problem of minimizing the functional (2.7) is casted in the form of the
Euler-Lagrange equation

δ

{
E[n]− µ

∫
n(r)dr

}
= 0, (2.10)

where the conservation of electrons is enforced by the Lagrange multiplier
µ, fixed so that

∫
n(r)dr = N Taking the functional derivatives and using

(2.7) and (2.9) we obtain an expression for vS

vs(r) = vext(r) +
∫

n0(r′)
|r− r′|

dr′ + vxc([n0]; r), (2.11)

where the exchange and correlation potential is

vxc([n0]; r) =
δExc[n]
δn(r)

∣∣∣
n0

. (2.12)

Eq. (2.10) can then be rewritten as∫
δn(r)

{
vs(r) +

δTs[n]
δn(r)

}
dr = 0, (2.13)

which takes the same form of an equation applied to a system of non-
interacting electrons moving in an effective potential vs(r). Therefore one
obtains the sought density n(r) by solving a set of single-particle Schrödinger
equations for a given vs(r)[

−1
2
∇2 + vs(r)

]
φi(r) = εiφi(r), (2.14)

and computing

n(r) =
N∑

i=1

|φi(r)|2, (2.15)

from which the ground state energy is

E0 =
occ∑
j

〈φi| −
1
2
∇2|φi〉+

∫
vext(r)n(r)dr + UH [n] + Exc[n](2.16)

= Ts[{φi}] +
∫
vext(r)n(r)dr + UH [n] + Exc[n]. (2.17)

As the sum of the eigenvalues in (2.14) is the same of the ground state energy
of the non-interacting KS system in (2.6) we can rewrite the kinetic energy
term Ts[{φi}] as

Ts[{φi}] =
occ∑
j

εj −
∫
vs(r)n(r)dr, (2.18)
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which allows to rewrite the ground state energy as

E0 =
occ∑
j

εj −
1
2

∫∫
n(r)n(r′)
|r− r′|

drdr′ + Exc[n]−
∫
vxc([n0]; r)n(r)dr

=
occ∑
j

εj − UH [n] + Exc[n]−
∫
vxc([n0]; r)n(r)dr.

(2.19)

Here are a few important remarks:

1. Although the KS equations are formally exact, the expression for the
exchange and correlation energy is in general unknown and needs to be
approximated. This also means that with the exact Exc[n] all many-
body effects are in principle included.

2. In order to evaluate the total energies (2.16)-(2.19) the KS equations
(2.14)are to be solved self-consistently, since the Kohn-Sham potential
in turn depends on the density.

3. If one neglects Exc[n] and vxc([n0]; r) altogether the previous equa-
tions reduce to the self-consistent Hartree equations. Therefore the
KS theory can be seen as a formal exactification of the Hartree ap-
proximation.

4. Neither the KS eigenstates φi nor eigenvalues εj have any obvious
direct physical meaning except that the φi produce the true physical
density by (2.15) and that the highest occupied εj equals the ionization
potential.

2.1.3 Exchange and correlation

The exchange and correlations terms in the KS theory reflect the fact that
the universal functional F [n(r)] contains information beyond the Hartree
term UH [n] and the one-body kinetic operator Ts[{φi}],

Exc[n] = F [n(r)]− Ts[{φi}]− UH [n]. (2.20)

In order to characterize it further it is usually separated into exchange and
correlation components

Exc[n] = Ex[n] + Ec[n]. (2.21)

In analogy with the Hartree-Fock exchange energy, Ex[n] is defined as
that part of the interaction energy which is not included in the Hartree
mean-field term, evaluated with respect to the non-interacting KS Slater
determinant Φmin

n

Ex[n] = 〈Φmin
n |Vee|Φmin

n 〉 − UH [n]. (2.22)
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The Hartree energy is just the classical electrostatic energy from a charge
density n(r), which also include a spurious self-interaction contribution, i.e.
each orbital interacting with itself

UH [n] =
1
2

occ∑
i,j

∫∫
φ∗i (r)φi(r)φ∗j (r

′)φj(r′)
|r− r′|

drdr′. (2.23)

The exchange energy can also be written explicitly in terms of the KS or-
bitals

Ex[n] = −1
2

occ∑
i,j

δσiσj

∫∫
φ∗i (r)φj(r)φ∗j (r

′)φi(r′)
|r− r′|

drdr′, (2.24)

which follows directly from the antisymmetry character of fermionic wave-
functions. Incidentally we notice that for i = j the exchange contribution
exactly cancels the self-interaction contribution from the Hartree term, as
it is always the case in Hartree-Fock theory. The terms i 6= j represent the
Pauli repulsion by producing a large negative value of Ex[n] for states with
parallel spin and non-zero overlap.Physically it is due to the fact that two
electrons with parallel spin tend to stay apart in space, thus lowering the
total electrostatic energy with respect to the corresponding non-interacting
system.

The correlation functional is defined as everything that is not accounted
for by using a non-interacting Slater determinant, i.e. all extra information
lacking in the KS wavefunctions and which has not been dealt with by
exchange

Ec[n] = 〈Ψmin
n |T + Vee|Ψmin

n 〉 − 〈Φmin
n |T + Vee|Φmin

n 〉 (2.25)

where Ψmin
n is the true many-body wavefunction, i.e. the wavefunction which

minimizes T + Vee. By rewriting (2.25) as

Ec[n] =
(
〈Ψmin

n |T |Ψmin
n 〉 − 〈Φmin

n |T + V |Φmin
n 〉

)
+(

〈Ψmin
n |Vee|Ψmin

n 〉 − 〈Φmin
n |Vee|Φmin

n 〉
) (2.26)

we see that the correlation energy contains many-body effects not included
in the single-particle wavefunction of two types:

1. A kinetic contribution, which is positive since Φmin
n is the wavefunction

that minimizes T .

2. A potential correction, which is negative since the whole sum is nega-
tive.

They account for the fact that in the interacting system the electrons are
kept apart due to the Coulomb repulsion, independently of the spin, thus
lowering the electrostatic energy with respect to the non- interacting system
and increasing the kinetic energy because of the restricted volume of space
available.



10 2. The Many-Body Problem

2.2 Exchange and correlation functionals

For a DFT calculation to model real systems an accurate xc-functional must
be used, which in practice has to be approximated. The formal definitions
(2.22)-(2.26) do not provide much guidance for the approximation of their
density functionals. This insight is provided by the adiabatic connection
formula presented below. The section then continues with a discussion of
the most used types of density functionals.

2.2.1 The Adiabatic Connection Formula

Let us define 0 < λ < 1 as a coupling constant in T + λVee and Ψminλ
n

as the wavefunction which minimizes T + λVee still producing the ground
state n(r). Varying λ at fixed n(r) corresponds to varying an external
fictitious potential vλ(r) so that 〈Ψminλ

n |n̂|Ψminλ
n 〉 = n(r) is kept constant.

This provides a smooth, “adiabatic connection” between the non-interacting
and the true interacting ground states while λ increases from 0 to 1. When
λ = 0, Ψminλ

n equals Φmin
n , i.e. the non-interacting Kohn-Sham wavefunction

and the potential vλ(r) becomes the Kohn-Sham effective potential vs(r).
When λ = 1, Ψminλ

n equals Ψmin
n , i.e. the true full interacting ground state

and vλ(r) is the true external potential Vext. Given this connection we can
rewrite (2.26) as

Exc[n] = 〈Ψminλ
n |T + lambdaVee|Ψminλ

n 〉
∣∣∣
λ=1

− 〈Ψminλ
n |T + Vee|Ψminλ

n 〉
∣∣∣
λ=0

− U [n]

=
∫ 1

0

d

dλ
〈Ψminλ

n |T + λVee|Ψminλ
n 〉 dλ− U [n]

(2.27)

The Hellmann-Feynman theorem allows us to simplify (2.27) to

Exc[n] =
∫
dλ 〈Ψminλ

n |Vee|Ψminλ
n 〉 − U [n] (2.28)

where we notice that the kinetic contribution to Exc[n] has been absorbed
in the coupling-constant integration.

In order to evaluate the N-electron expectation value of the two-body
operator Vee in (2.28) we introduce the two-electron reduced density matrices
ρ2

ρ2(r′, r) = N(N − 1)
∫
dr3 . . .

∫
drN |Ψ(r′, r, . . . , rN )|2 (2.29)

so that we get

〈Vee〉 =
1
2

∫
dr
∫
dr′

ρ2(r′, r)
|r− r′|

(2.30)
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from which we interpret the number ρ2(r′, r) as the joint probability of
finding an electron in the volume element dr′ at position r′ an electron in
dr at r. This is then equivalent to

ρ2(r′, r) = n(r)n2(r, r′) (2.31)

where n2(r, r′) is the conditional probability for finding an electron at r′

given that there is one at r. For the wavefunction Ψminλ
n we write n2 as

n2(r, r′) = n(r′) + nλ
xc(r, r

′) (2.32)

thus defining the exchange and correlation hole nλ
xc(r, r

′), which can be easily
shown to satisfy the sum rule∫

nλ
xc(r, r

′)dr′ = −1 (2.33)

which represents the missing of one electron, namely the one at r. We can
then rewrite 2.28 as

Exc[n] =
1
2

∫
dr
∫
dr′

n(r)nxc(r, r′)
|r− r′|

(2.34)

where

nxc(r, r′) =
∫ 1

0
dλnλ

xc(r, r
′) (2.35)

is the coupling-constant averaged hole density. From 2.35 we the interpret
the exchange-correlation energy as the electrostatic interaction between the
electrons and the averaged xc-hole which surrounds it.

If we consider the limit λ = 0 we can define the exchange-hole density
as

nx = nλ=0
xc (r, r′) (2.36)

which can be constructed explicitly from the KS orbitals since Ψminλ=0
n is

now a KS Slater determinant.

2.2.2 Approximations for XC

Equation (2.34) for Exc[n] can be rewritten as

ELDA
xc [n(r)] =

∫
drn(r)εxc(r, [n(r̃)]) (2.37)

where εxc(r, [n(r̃)]) represents an exchange-correlation energy per particle
at point r, which is also a functional of the density n(r̃). The most common
and traditional approximations for Exc[n] have a quasi local form, i.e. they
depends primarily on he density n(r̃) at points r̃ near r, where ”near” is a
microscopic distance such as the local Fermi wavelength or the TF screening
length.
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LDA

The Local Density Approximation, introduced by Kohn and Sham in ([22]),
approximates εxc(r, [n(r̃)]) by that of an homogeneous electron gas with the
same density as the local density of the real system n(r)

ELDA
xc [n(r)] =

∫
drn(r)εunif

xc (r, [n(r̃)]) (2.38)

The exchange part can written analytically from (2.24), where the KS or-
bitals are plane-waves since the KS potential vs in constant in for an homo-
geneous electron gas

εunif
x (n) = − 3

4π
(3π2n)1/3 (2.39)

Analytical expressions for the correlation part εunif
c are only known in

certain limits, and one then uses expression fitted from accurate quan-
tum Monte-Carlo calculations. The most common parametrizations are the
Perdew-Wang [29] and the Perdew-Zunger [30].

By construction LDA is exact for a uniform electron gas, and it’s then
expected to be a good approximation for densities varying sufficiently slowly.
Nevertheless the LDA has proven to yield good results in most applications,
even for atomic systems where the hypotesis of constant density is evidently
violated. This has been at least in part attributed to the fact that the
LDA shows many formal features, such as the sum rule for the exchange-
correlation hole. However, though surprisingly good if compared to the
simplicity of the approximation, the LDA has several fundamental failures
such as unwanted self-interactions.

A slightly more complex version of LDA is the Local-Spin-Density Ap-
proximation (LSDA), which includes information about the local density of
each spin.

ELSDA
xc =

∫
drn(r)εxc(n↓(r), n↑(r)) (2.40)

The LSDA performs significantly better for system with some spin-polarization.

GGA

Although LDA is still the common choice in solid state physics, several
Generalized Gradient Approximations (GGA) have pushed LDA results to
the accuracy usually required by the quantum chemistry community.

The first obvious step beyond the local approximation is a functional
of both the density n(r) and the magnitude of its gradient |∇n|, as it was
suggested already in the original paper [22]. However, such a gradient ex-
pansion does not provide consistent and systematic improvements over the
LDA, the main problem being the fact that gradients in real materials can
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be so large that the expansion breaks down. Indeed it violates many for-
mal conditions, often producing worse results. It is convenient to define the
functional as a generalized form of (2.38)

EGGA
xc =

∫
drεGGA

xc (n(r), |∇n(r)|)

≡
∫
drεunif

xc (n(r))Fxc(n(r), |∇n(r)|)
(2.41)

where Fxc is a dimensionless enhancement factor and εunif
x is the exchange

energy of an homogeneous electron gas, same as in the LDA.
The exchange energy, common for all GGAs, is written as

EGGA
x =

∫
drn(r)εunif

x (n(r))Fx(s) (2.42)

where
s =

|∇n(r)|
2kfn(r)

(2.43)

is a dimensionless reduced density gradient, i.e. a measure of how fast and
how much the density varies on the scale of the Fermi wavelength. Different
exchange GGAs only differ for the enhancement factor Fx(s), for which
various forms have been proposed; the most widely used are by Becke (B88)
[4], Perdew and Wang (PW91) [29]and Perdew, Burke and Enzerhof (PBE)
[10]. Revised versions of PBE have also been proposed, such as revPBE
[37]and RPBE [14].

The correlation part is generally more difficult, but its contribution to
the total energy is also typically much smaller than the exchange.

Hybrid Functionals

The observation that λ = 0 in the coupling constant integration corresponds
to the exact HF exchange energy suggests to mix a fraction of exact exchange
with the GGA (or LDA) exchange and correlation

Ehyb
xc = aEexact

x + (1− a)EGGA
x + EGGA

c (2.44)

where the parameter a can be either fitted empirically from atomic and
molecular databases or it can be estimated theoretically.

Several parametrizations are available in literature, one of the most fa-
mous on being the B3LYP

EB3LY P
xc = ELDA

x + a0(Eexact
x − EGGA

x ) + axE
B88
x + acE

LY P
c (2.45)

with the coefficient adjusted to fit atomic and molecular data, and correla-
tion treated used the Lee-Yang-Parr (LYP) [24].

Hybrid functionals are today the most accurate functionals as far as
energetics is concerned, and are the method of choice in quantum chemical
calculations.
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Orbital-Dependent Functionals

A broad class of approximations tries to improve the exchange and correla-
tion functionals by expressing Exc[n] explicitly in terms of the Kohn-Sham
orbitals φi. This could be rationalized by noting that the main advance of
the Kohn-Sham approach over the Thomas-Fermi method is indeed the ex-
pression of the kinetic energy in terms of the single-particle orbitals. When
this idea is applied to the exchange part of Exc[n], the approximation is
denoted as ”exact exchange” (EXX), but general approaches applicable to
correlation functionals do exist as well.

Another line of approximations which makes use of orbital-dependent
functionals tries to correct for the unphysical self-interaction present in many
exchange and correlation functionals. This problem is most important in sys-
tem with localized or strongly interacting electrons. Two of these methods
are SIC and LDA+U.



Chapter 3

Projector Augmented Wave
Method

In order to solve the electronic structure problem within the DFT formalism,
the Kohn-Sham equations are to be solved in some efficient numerical way.

One of the main issues in condensed matter systems is the very different
behaviour of the wavefunction at different distances from the nuclei. Since
the atomic wavefunctions are eigenstates of the atomic Hamiltonian, they
must be all mutually orthogonal. Since the core states are well localized
around the nucleus, the valence state must oscillate rapidly in the core region
in order to mantain this orthogonality, making it difficult to describe them
accurately without using a very large basis set, or a very fine mesh. On the
other hand, the core electrons are practically inert and very localized, and
only the valence electrons contribute to the chemical behaviour of a given
specie. This argument then suggests to treat core and valence electrons in
a different way, possibly obtaining numerical advantages.

One common approach is the use of “pseudopotentials” in which nuclei
and core electrons are described by an effective, smooth potential, which is
constructed in such a way to reproduce the correct effect on the remain-
ing valence electrons. The Kohn-Sham equations are then solved only for
the valence electrons, thus reducing the computational effort; the pseudopo-
tentials are calculated and tabulated once for each element. On the other
hand, all information about the real wavefunction close to the nuclei is lost,
making it hard to compute properties which rely on the core region (elec-
tric field gradients, hyperfine parameters, etc). A second major drawback is
that there is no systematic way to generate good pseudopotentials, so the
procedure is not well controlled.

Another approach is the so called class of “all-electron” methods, in
which the full information about the wavefunction is available. This ap-
proach is usually tied to the frozen-core approximation, in which the core
orbitals are calculated and tabulated once and held fixed. This is again

15
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justified by the fact that the core states are not influenced by the chemical
environment, at least for most purposes. One of the most important of such
methods is the Augmented-Plane-Wave method (APW), in which the space
is partitioned in two regions: a spherical one around each atom in which the
wavefunction is expanded onto a local basis in order to reproduce the great
variations, and an interstitial region in which another basis is chosen (plane
waves for instance) and connected to the first local basis.

A more general approach is the Projector-Augmented-Wave method (PAW)
introduced by Blöchl in 1994 [5] as an extension of both augmented-wave
and pseudopotential methods, which in fact can be recovered by well defined
approximations [28] [23]. This method is presented in this chapter, since all
the work contained in this thesis is done within this formalism, which is
implemented in a state-of-the-art real space code GPAW [17].

3.1 PAW Transformation Operator

As mentioned above, the shape of the wavefunctions is very different in
different regions of space. The basic idea of the PAW method is to divide
the wavefunction into two parts: a partial wave expansion within an atom-
centered sphere, and an envelope function outside. The two parts are then
matched smoothly at the sphere edge.

We seek a linear transformation T̂ which maps some computationally
convenient (“pseudo” (PS) or “smooth”) wavefunctions |ψ̃〉 to the physically
relevant (“true” or “all-electron”) wavefunctions |ψ〉

|ψn〉 = T̂ |ψ̃n〉 (3.1)

where n is a quantum state label, consisting of a band index and possibly a
spin and k-vector index. The ground state PS wave function is then obtained
by solving the Kohn-Sham equations in the transformed Hilbert space

T̂ †ĤT̂ |ψ̃n〉 = εnT̂ †T̂ |ψ̃n〉 (3.2)

Since the true wavefunctions are smooth enough at a certain distance from
the core, we require that the transformation is just the unity operator beyond
the augmentation cut-off and a sum of atom-centered contributions inside

T̂ = 1 +
∑

a

T̂ a (3.3)

where a is an atom index and T̂ a = T̂ a(r−Ra) = 0 for |r−Ra| > ra
c . The

cut-off radii ra
c is chosen such that there is no overlap between augmentation

spheres.
Within the augmentation region Ωa, we expand the PS wavefunction

into PS partial waves φ̃a

|ψ̃n〉 =
∑
ia

cani |φ̃a
i 〉 within Ωa (3.4)
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and similarly its all-electron counterpart via eq.(3.1)

|ψn〉 =
∑
ia

cani |φa
i 〉 within Ωa (3.5)

By applying eq.(3.1) we obtain

|φa
i 〉 = (1 + T̂ a) |φ̃a

i 〉 ⇒ T̂ a |φ̃a
i 〉 = |φa

i 〉 − |φ̃a
i 〉 ∀a, i (3.6)

which fully determines the transformation T̂ in terms of the partial waves.
Hence we can express the true wavefunction as

|ψn〉 = |ψ̃n〉 −
∑
ia

cani |φ̃a
i 〉+

∑
ia

cani |φa
i 〉 (3.7)

with the expansion coefficients to be determined.
Since we require T̂ to be linear, the coefficients must be linear functionals

of the PS wavefunction |ψ̃n〉, i.e. scalar products

cani = 〈p̃a
i |ψ̃n〉 ≡ P a

ni (3.8)

where p̃a
i are some fixed functions, named PS projector functions, and the

name P a
ni is given for consistence with existing literature.

If we require zero overlap between different augmentation spheres, the
one-center expansion of a PS wavefunction

∑
i 〈p̃a

i |ψ̃n〉 |φ̃a
i 〉 has to be iden-

tical to |φ̃a
i 〉 itself inside the augmentation sphere. This is equivalent to

fulfilling the completeness relation∑
i

|φ̃a
i 〉 〈p̃

a
i | = 1 within Ωa (3.9)

which in turn implies that

〈p̃a
i1
|φ̃a

i2
〉 = δi1,i2 within Ωa (3.10)

i.e. PS projector functions and partial waves are mutually orthonormal
within the augmentation sphere.

Finally, by inserting (3.8) into (3.7) we obtain a closed form for the
transformation operator

T̂ =
∑

a

∑
i

(|φa
i 〉 − |φ̃a

i 〉) 〈p̃
a
i | (3.11)

which allows us to get the true, all-electron, Kohn-Sham wavefunction ψn(r) =
〈r|ψn〉 as

ψn(r) = ψ̃n(r) +
∑

a

∑
i

(φa
i (r)− φ̃a

i (r)) 〈p̃
a
i |ψ̃n〉 (3.12)
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It is generally convenient to introduce the one center expansions

ψa
n(r) =

∑
i

φa
i (r) 〈p̃a

i |ψ̃n〉

ψ̃a
n(r) =

∑
i

φ̃a
i (r) 〈p̃a

i |ψ̃n〉
(3.13)

which makes it possible to write the true wavefunction compactly as

ψn(r) = ψ̃n(r) +
∑

a

(ψa
n(r)− ψ̃a

n(r)) (3.14)

explicitly separating the extended-space and the atom-centered contribu-
tions. This will often be exploited to obtain compact expression for various
quantities in PAW. The first term can be evaluated on an extended grid,
or on a soft basis-set, while the last two terms are evaluated on fine radial
grids.

In summary, the three ingredients that determine the PAW transforma-
tion are:

a) The partial waves φa
i , which are constructed as solutions of the Schrodinger

equation for the isolated atom and used as an atomic basis for the all-
electron wavefunctions within the augmentation sphere.

b) The PS (smooth) partial waves φ̃a
i , which coincide with the corre-

sponding true partial waves outside the augmentation sphere but are
smooth continuations inside the spheres. These are used as atomic
basis-sets for the PS wavefunctions.

c) The PS (smooth) projector functions p̃a
i , one for each partial wave,

which fulfill the condition 〈p̃a
i1
|φ̃a

i2
〉 = δi1,i2 inside each augmentation

sphere.

3.2 Approximations

Up to this point the PAW method appears as an exact implementation of
the density functional theory. In order to make it a practical scheme, some
approximations are needed.

Frozen Core
The frozen core approximation assumes that the core states are localized in
the augmentation spheres and that the core states are not modified by the
chemical environment. The core Kohn-Sham states are thus chosen to be
exactly the core states of the isolated atoms:

|φc
n〉 = |ψa,core

α 〉 (3.15)
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Notice that, differently from (3.5), no projector functions needs to be de-
fined for the core states.

Finite basis set
The extended PS contribution ψ̃n in (3.14) is evaluated outside the aug-
mentation spheres by means of a suitable basis set or on a real-space grid.
In both cases the non completeness of the basis, or equivalently the finite
grid-spacing, will introduce an error.

Finite number of partial waves and projectors
The number of partial waves and projector functions is obviously finite.
This means that that the completeness conditions we have required are not
strictly fulfilled. However the approximation can be controlled by increasing
the number of partial waves and projectors so that they form a satisfactory
complete space for the expansion of the wavefunctions within the augmen-
tation spheres.

3.3 Expectation values

In order to evaluate physical observables we need to evaluate expectation
values of some operator A, which we can express both in terms of PS wave-
functions or true wavefunction. Within the frozen core approximation, it
reads

〈A〉 =
val∑
n

fn 〈ψn|A|ψn〉+
∑

a

core∑
α

〈φa,core
α |A|φa,core

α 〉

=
val∑
n

fn 〈ψ̃n|Ã|ψ̃n〉+
∑

a

core∑
α

〈φa,core
α |Ã|φa,core

α 〉

(3.16)

The PAW-transformed operator Ã is obtained from (3.1)

Ã = T̂ †AT̂

= A+
∑

a

∑
i1,i2

|p̃a
i1
〉
(
〈φa

i1 |A|φ̃
a
i2
〉 − 〈φ̃a

i1
|A|φa

i2〉
)
〈p̃a

i2
|+ ∆ANL (3.17)

where

∆ANL =
∑
a,i1

|p̃a
i1〉 (〈φ

a
i1 | − 〈φ̃

a
i1
|)A

1−
∑
a′,i2

|φ̃a′
i2
〉 〈p̃a′

i2 |


+

1−
∑
a′,i2

|p̃a′
i2〉 〈φ̃

a′
i2
|

A
∑
a,i1

(|φa
i1〉 − |φ̃

a
i1
〉) 〈p̃a

i1 |

(3.18)
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is the non-local contribution, which is non-zero only if A is a non-local
operator in coordinate representation. If A is local ∆ANL vanishes because∑

a′,i2
|φ̃a′

i2
〉 〈p̃a′

i2
| = 1 inside the augmentation spheres, while 〈φa

i1
| − 〈φ̃a

i1
| is

zero outside the spheres.
By using (3.17), we can now write the expectation value of a local oper-

ator A as

〈A〉 =
val∑
n

fn 〈ψ̃n|A|ψ̃n〉+
∑

a

∑
i1,i2

∑
n

fn 〈ψ̃n|p̃a
i1〉
(
〈φa

i1 |A|φ̃
a
i2
〉 − 〈φ̃a

i1
|A|φa

i2〉
)
〈p̃a

i2
|ψ̃n〉+

+
∑

a

core∑
α

〈φa,core
α |A|φa,core

α 〉

(3.19)

By introducing the one-center density matrix

Da
i1i2 =

∑
n

fn 〈ψ̃n|p̃a
i1〉 〈p̃

a
i2
|ψ̃n〉 =

∑
n

fnP
a∗
ni1P

a
ni2 (3.20)

we can finally cast (3.19) into

〈A〉 =
val∑
n

fn 〈ψ̃n|A|ψ̃n〉+
∑

a

∑
i1,i2

(
〈φa

i1 |A|φ̃
a
i2
〉 − 〈φ̃a

i1
|A|φa

i2〉
)
Da

i1i2+

+
∑

a

core∑
α

〈φa,core
α |A|φa,core

α 〉

(3.21)

For future convenience we notice that by making use of the one-center
expansion of eq.(3.13) we can also write

〈A〉 =
val∑
n

fn(〈ψ̃n|A|ψ̃n〉+
∑

a

(〈φa
n|A|ψa

n〉 − 〈φ̃a
n|A|ψ̃a

n〉)) + core (3.22)

where the core contribution takes the same form as the valence expression.

3.3.1 Density

The charge density at point r is the expectation value of the real-space
projection operator |r〉 〈r|

n(r) =
∑

n

fn 〈ψn|r〉 〈r|ψn〉 =
∑

n

fn|ψn(r)|2 (3.23)

Since it is a local operator, we can directly apply either (3.21) or (3.22) and
get

n(r) = ˜n(r) +
∑

a

(na(r)− ˜na(r)) (3.24)
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where

˜n(r) =
∑

n

fn|ψ̃n(r)|2 + ˜nc(r)

na(r) =
∑
i1i2

Da
i1i2φ

a
i1(r)φ

a
i2(r) + na

c (r)

˜na(r) =
∑
i1i2

Da
i1i2 φ̃

a
i1

(r)φ̃a
i2

(r) + ña
c (r).

(3.25)

Notice that by introducing the pseudo core density ña
c , we implicitly take

into account possible contributions from core states which extends outside
the augmentation spheres.

3.4 Total Energy

The total energy is given by the DFT expression (2.16). Symbolically it
reads

E[n] = Ts[n] + UH [n] + Vext[n] + Exc[n] (3.26)

Like wavefunctions and expectation values, we also want the total energy
to be be separated into three contributions

E = Ẽ +
∑

a

(Ea − Ẽa) (3.27)

where, as usual, the first one only contains smooth functions and is spatially
extended while the last two contributions are atom-centered corrections.
The goal is thus to obtain an expression with no terms which need to be
evaluated on two incompatible grids.

3.4.1 Kinetic energy

The kinetic energy term is usually written as an explicit functional of the
Kohn-Sham orbitals (it is still an implicit functional of the density as well)

Ts[{ψn}] =
∑

n

fn 〈ψn| −
1
2
∇2|ψn〉 . (3.28)

Since it is a (semi-) local functional, it can be easily separated by apply-
ing (3.21) directly to get

Ts[{ψn}] = T̃s +
∑

a

(T a
s − T̃ a

s ) (3.29)
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where

Ts =
∑

n

fn 〈ψ̃n| −
1
2
∇2|ψ̃n〉

T a
s = Da

i1i2 〈φ
a
i1 | −

1
2
∇2|φa

i2〉+
core∑
α

〈φa,core
α | − 1

2
∇2|φa,core

α 〉

T̃ a
s = Da

i1i2 〈φ̃
a
i1
| − 1

2
∇2|φ̃a

i2
〉+

core∑
α

〈 ˜φa,core
α | − 1

2
∇2| ˜φa,core

α 〉

(3.30)

3.4.2 Exchange and Correlation energy

As long as semi-local approximations are considered, such as LDAs or GGAs,
equation (3.21) can be used to obtain

Exc[n] = Exc[ñ] +
∑

a

(Exc[na]− Exc[ña]) (3.31)

The atom-centered correction can be written as a functional of the den-
sity matrix defined in (3.20) through (3.25)

Exc[na]− Exc[ña] = ∆Exc[{Da
i1i2}] (3.32)

3.4.3 Hartree energy

In the term UH [n]+Vext[n] from the total energy, the external potential Vext

is the sum of the potential from the nuclei, of charge Za(r) = −Zδ(r−Ra),
and of any other actual external fields. In the following we will assume that
the latter contribution is strictly zero. We are then left with

U tot
H ≡ UH [n] + Vext[n]

=
1
2

∫∫
n(r)n(r′)
|r− r′|

drdr′ +
∫∫

n(r)
∑

a Z
a(r′)

|r− r′|
drdr′+

+
1
2

∑
a 6=a′

∫∫
Za′

(r)Za(r′)
|r− r′|

drdr′

(3.33)

which I will call total the Hartree energy, as it represents the total electro-
static energy of the system, i.e. nuclei and electrons. In fact, by introducing
the charge neutral total density ρ(r) = n(r)+

∑
a Z

a(r) it can be written as

U tot
H [n] ' UH [ρ] =

∫∫
ρ(r)ρ(r′)
|r− r′|

drdr′ (3.34)

the symbol ' being due to the fact that the Hartree total energy of the right-
hand side introduces a self-interaction term for the nuclei. This behaviour
must be removed obviously, as we will show later.
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In order to separate the extended pseudo part and the one-center part,
we add and subtract from the total density a compensation charge Z̃a inside
the augmentation spheres

ρ = n+
∑

a

(Za + Z̃a − Z̃a) (3.35)

and by expanding n according to (3.24) we obtain

ρ = ρ̃+
∑

a

(ρa − ρ̃a) (3.36)

where

ρ̃ = ñ+
∑

a

Z̃a

ρa = na + Za

ρ̃a = ña + Z̃a

(3.37)

The Hartree energy can then be written as a sum of the usual three
contributions

UH = U [ρ̃] +
∑

a

(U [ρa]U [ρ̃a]) (3.38)

where

U [ρ̃] =
1
2

∫∫
ρ̃(r)ρ̃(r′)
|r− r′|

drdr′

U [ρa] =
1
2

∫∫
ρa(r)ρa(r′)
|r− r′|

drdr′

U [ρ̃a] =
1
2

∫∫
ρ̃a(r)ρ̃a(r′)
|r− r′|

drdr′

(3.39)

Notice that the problem of the nuclear self-interaction in (3.34) is solved
automatically in the PAW formalism, i.e. it is taken care of by the atom-
centered contributions. The contribution U [ρ̃] in (3.38) is, in fact, a Hartree
term without any self-interaction corrections.

Compensation charges

The compensation charges Z̃a are introduced so that also the Hartree en-
ergy can be separated into the extended smooth part and the atom-centered
correction. This means that the atom-centered correction ρa − ρ̃a should
not interact with charges outside the augmentation spheres, i.e. it should
have vanishing electrostatic multipole moments. In other words, we require
the pseudo charge density ρ̃ to have the same multipole moments as the
all-electron charge density ρ. The potential from a localized charge distri-
bution seen from outside the region of localization, in fact, only depends
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on the multipole moments and not on the actual geometry of the charge
distribution. This requirement is expressed as∫

drrl(ρa − ρ̃a)YL(r−Ra) = 0 (3.40)

where L = (l,m) is the angular and magnetic index of the spherical har-
monics expansion YL

It is thus natural to construct the compensation charges by multipole
expansion of localized smooth functions g̃a

L

Z̃a =
∑
L

Qa
Lg̃

a
L(r) (3.41)

where the functions g̃a
L are normalized as∫

drrlg̃a
L(r)YL(r−Ra) = 1 (3.42)

By inserting (3.41) into (3.40) we find an expression for the multipole mo-
ments

Qa
L = drrl[na(r) + Za(r)− ña(r)]YL(r−Ra)

= ∆aδl,0 +
∑
i1i2

∆a
L,i1i2D

a
i1i2

(3.43)

where

∆a =
∫
drY00(r̂)[na

c (r)− ña
c (r)−Zaδ(r)]

∆a
L,i1i2 =

∫
drrlYL(r̂)[φa

i1(r)φ
a
i2(r)− φ̃a

i1
(r)φ̃a

i2
(r)]

(3.44)

3.4.4 Summary

By summing up all the terms we derived above, we finally obtain the sought
separation of the total energy into the smooth and atom-centered contribu-
tions

E = Ẽ +
∑

a

(Ea − Ẽa) (3.45)

where

Ẽ = T̃s + U [ρ̃] + Exc[ñ] (3.46)

Ea =
∑

a

(T a
s + U [ρa] + Exc[na]) (3.47)

Ẽa =
∑

a

(T̃s
a

+ U [ρ̃a] + Exc[ña]) (3.48)
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By using (3.41) and (3.43), the atom-centered correction Ea − Ẽa can
be written as a function of the density matrix Da

i1i2

Ea − Ẽa = ∆Ea[{Da
i1i2}]

= Aa +
∑
i1i2

Ba
i1i2D

a
i1i2 +

∑
i1i2i3i4

Da∗
i1i2C

a
i1i2i3i4D

a
i3i4 + ∆Exc({Da

i1i2})

(3.49)

where Aa, Ba
i1i2

and Ca
i1i2i3i4

are system-independent tensors which can be
pre-calculated and stored for each relevant chemical element.

3.5 Transformed Kohn-Sham equations

The PAW variational parameters are the pseudo wavefunctions {ψn}. These
can be obtained either by solving the all-electron Kohn-Sham equations and
subsequently transforming the resulting wavefunctions, or by solving the
transformed Kohn-Sham equations

˜̂
H |ψ̃n〉 = εnŜ |ψ̃n〉 (3.50)

where Ŝ = T̂ †T̂ is the overlap operator and ˜̂
H = T̂ †ĤT̂ is the transformed

Hamiltonian.

3.5.1 Overlap operator

The PAW overlap operator can be obtained directly by transforming the
unity operator according to (3.17)

Ŝ = T̂ †1̂T̂ = 1 +
∑

a

∑
i1,i2

|p̃a
i1
〉
(
〈φa

i1 |φ̃
a
i2
〉 − 〈φ̃a

i1
|φa

i2〉
)
〈p̃a

i2
|

= 1 +
∑

a

∑
i1,i2

|p̃a
i1
〉
√

(4π)∆a
00,ij 〈p̃a

i2
|

(3.51)

The orthogonality condition for the eigenstates of the Kohn-Sham equa-
tions then becomes

〈ψn|ψm〉 = δnm ⇒ 〈ψ̃n|Ŝ|ψ̃m〉 = δnm (3.52)

i.e. the pseudo wavefunctions are orthogonal with respect to the weight Ŝ.

3.5.2 Hamiltonian operator

In order to write the transformed Hamiltonian as the usual sum of the
smooth and the atom-centered contributions, we use the fact that

δE

δψ̃∗n
= fn

˜̂
Hψ̃n (3.53)
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to explicitly calculate the derivative of the total energy (3.45)

δE

δψ̃∗n(r)
=

δ

ψ̃∗n(r)

[
T [ψ̃∗n] + U [ρ̃] + Exc[ñ]∆Ea[{Da

i1i2}]
]

=
δT [{ψ̃a

n}]
δψ̃∗n

+
∫
dr′
[
δExc[ñ]
δñ(r′)

+
δU [ρ̃]
δñ(r′)

]
δñ(r′)
δψ̃∗n(r)

+

+
∑

a

∑
i1i2

[∫
dr′

δUH [ñ+
∑

a Z̃
a]

δZa(r′)
δZa(r′)
δDa

i1i2

+
δ∆Ea

δDa
i1i2

]
δDa

i1i2

δψ̃∗n(r)

= −1
2
∇2fnψ̃n(r) +

∫
dr′
[
vxc[ñ](r′) + uH [ρ̃](r′)

]
fnδ(r− r′)ψ̃n(r′)+

+
∑

a

∑
i1i2

[∫
dr′uH [ñ+

∑
a

Z̃a](r′)
∑
L

∆a
Li1i2 g̃

a
L(r′) +

δ∆Ea

δDa
i1i2

]
fnp̃

a
i1(r)P

a
ni2

(3.54)

Using (3.53) we then obtain the transformed Hamiltonian as

˜̂
H = −1

2
∇2 + uH [ρ̃] + vxc[ñ] +

∑
a

∑
i1i2

|p̃a
i1〉∆H

a
i1i2 〈p̃

a
i2 | (3.55)

where the atomic corrections ∆Ha
i1i2

are given as the tensor

∆Ha
i1i2 =

∑
L

∆a
Li1i2

∫
druH [ρ̃]g̃a

L(r) +
δ∆Ea

δDa
i1i2

=
∑
L

∆a
Li1i2

∫
druH [ρ̃]g̃a

L(r) +Ba
i1i2 + 2

∑
i3i4

Ca
i1i2i3i4D

a
i3i4 +

δ∆Ea

δDa
i1i2

(3.56)
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Implementations

In order to solve the Kohn-Sham equations (3.2), the wavefunction needs
to be evaluated. For this, one can use real-space grids to directly sample
the values of the wavefunction at the grid points or one can expand the
wavefunction in some basis-set.

This chapter will review the most important aspects of different standard
computational approaches to the calculation of single-particle states of a
Schrödinger-like equation.

4.1 Boundary conditions

Like any other differential equations, the Kohn-Sham equations must be
solved subjected to appropriate boundary conditions (BCs).

4.1.1 Periodic systems

Solving the Schrödinger equation, or equivalently the K-S equations, for an
infinite periodic system is in principle impossible, as it requires solving for
an infinite number of states over an infinite domain. Fortunately the form
of these equations provides a general property which simplifies the problem
in the case of periodic potentials

Bloch’s theorem 4.1.1 The eigenstates of the single particle Hamiltonian
H = −h̄∇2

2m + V (r), where V (r) = V (r + R) for all R in a Bravais lattice,
can be chosen to have the form

ψnk(r) = eik·runk(r), (4.1)

i.e. as plane waves times a function with the periodicity of the lattice. An
equivalent form is

ψnk(r + R) = eik·rψ(r). (4.2)

27
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As a consequence, the wave vector k of a Bloch state can always be confined
to the first Brillouin zone, because if k′ lies outside then k′ = k + K and
eiK·R = 1. The allowed values of k are then dictated by the boundary
conditions.

Bloch’s representation points out that the number of occupied states is
finite, at each k-point, even for infinite periodic systems. This transforms
the problem of computing an infinite number of wave functions into the
problem of computing a finite number, for an infinite number of k-points.
By also noting that states with similar k vector are similar, this provides
a practical way to convert integrals over all space into averages on values
sampled at an appropriate set of k-points only inside the first Brilluoin zone.

In real-space grids approaches one directly enforces (4.2) at the unit-cell
boundaries. This means that one has then to solve the Kohn-Sham equations
with different BCs for each k but the Hamiltonian remains unaffected by
the periodicity, and thus fixed.

In plane-wave implementations periodic boundary conditions arise in a
natural way, as they form a basis expansion for unk(r). Differently from the
real-space case, here the Hamiltonian Ĥ = Ĥ(k) is different for each k, but
the BCs are then the same for each k.

4.1.2 Finite systems

In order to describe finite non-periodic systems, Dirichlet (or vanishing)
boundary conditions are the appropriate choice

ψn(r) = 0 for r outside the unit cell (4.3)

Enforcing Dirichlet boundary conditions is straightforward in real-space
grids and localized basis-sets approaches.

However, by using super-cells, it is also possible to treat finite systems
using periodic boundary conditions. This is for instance necessary for plane-
wave bases, since they per se require periodicity. This is achieved by in-
cluding enough vacuum around the system under investigation, so that the
interaction between neighboring cells goes to zero. The so-called supercell
approach consists in infinitely repeating the unit cell in the directions which
are to be treated with periodic conditions. In this way a superlattice is
produced, and Bloch theorem applies.

4.2 Basis-Sets

Any element of a vector space can be expressed as a linear combination
of base vectors. In quantum mechanics, a quantum state (-vector) is an
element of an infinite-dimensional Hilbert space. In principle, given a state
|ψn〉, an infinite number of basis functions is required in order to reproduce
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it. The basis-set {Φ} is termed complete if any element of the space can be
written as a linear combination of base vectors.

ψn =
∑

µ

cnµΦµ (4.4)

The solution to the Kohn-Sham equation can be found by expanding the
wavefunctions onto a truncated basis set, in order to obtain a finite matrix
eigenvalue problem. The main issue is, of course, the choice of a “good”
basis set. The accuracy of the approximation will be high if the basis-set
approaches the complete basis limit.

4.2.1 Plane waves

Since unk(r) is cell-periodic, it can be expressed as a discrete Fourier sum.
Equation (4.1) then reads

ψnk =
∑
G

cnke
i(k+G)·r, (4.5)

where G is any reciprocal lattice vectors and the normalization factor 1/V
over the volume of the supercell has been absorbed into the expansion coeffi-
cients. By inserting (4.5) into the Kohn-Sham equations we find the matrix
eigenvalue problem∑

G′

[
1
2
|k + G′|2δGG′ + V eff

G−G′

]
cnk+G′ = εncnk+G, (4.6)

where V eff
G−G′ are the Fourier coefficient of V eff.

Although Bloch theorem reduced the continuous plane-wave expansion
to a discrete sum, the sums over the reciprocal lattice vector are still infinite.
In order to obtain a finite matrix problem, the expansion must be truncated.
This is achieved by introducing a cut-off energy Ecut for the plane waves,
such that only plane waves that satisfy 1

2 |k + G|2 ≤ Ecut are included in the
expansion (4.5).

The main advantages of a plane-wave basis are:

1. The convergence of the result can then be controlled just by one pa-
rameter, i.e. Ecut.

2. Plane waves are orthonormal and independent of the atomic positions,
i.e. there is no basis-set superposition error and Pulay forces.

3. Integrals and derivatives can be efficiently computed in reciprocal
space, making it easy to calculate the matrix elements of the Hamil-
tonian.
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On the other hand, the computational cost of a well-converged calcu-
lation is usually high, especially for isolated systems, where the required
number of plane waves is large. Plane waves, in fact, cannot take advan-
tage of the vacuum to reduce the size of the basis. In order to conveniently
reduce Ecut, smooth pseudopotentials must be employed. Furthermore ef-
ficient parallelization is problematic due to the mathematics of delocalized
plane waves. The required Fourier transforms are actually very difficult to
parallelize.

4.2.2 Analytical atomic orbitals

Gaussian orbitals

Gaussian-type orbitals (GTO) are the most widely used basis-set used in
quantum-chemical wavefunction methods.

ψ(r) = xiyjzke−αr2
Ylm(θ, φ), (4.7)

where α is an orbital-dependent parameter setting the width of the function,
and l = i + j + k is used to classify the GTO as s−type (l = 0), p−type
(l = 1), etc. Their form is not suggested by physical arguments, but because
they are numerically easy to deal with. By taking advantage of the fact that
the product of gaussians is still a gaussian, many-center integrals can be
computed analytically using very efficient schemes.

Since a GTO alone does not resemble a real atomic eigenfunction, one
can then contract several of them together in a fixed linear combination to
give a Contracted Gaussian function (CGF). The expansion coefficient are
chosen in such a way that the CGF resembles as much as possible a single
STO (see below). In this way the number of basis functions can be reduced,
still mantaining the computational advantages of gaussian functions.

Slater-type orbitals

Slater-type orbitals (STO) were the first basis set used in quantum chem-
istry, suggested by the form of the analytical solution for the isolated hy-
drogen atom

ψ(r) = rn−1e−ζrYlm(θ, φ), (4.8)

where ζ is an orbital exponent and n is the principal quantum number. As
r → 0 these orbitals exhibit the correct cusp behavior (while GTOs go to
zero with zero slope) and the exponential decay as r →∞ (while GTOs fall
off too quickly). For this reason one needs fewer STOs than GTOs in order
to achieve a given accuracy. On the other hand, many-center integrals are
much more difficult to compute with STOs, since some work cannot be done
analytically.



4.3. Real-Space and Finite-Differences 31

4.2.3 Numerical atomic orbitals

Numerical atomic orbitals are obtained as solutions of the radial Kohn-Sham
equation for a given isolated atom times spherical harmonics

ψi(r) = ϕi(r)Ylm(r̂). (4.9)

These orbitals are represented numerically by means of spline interpolation
between grid points. The physical origin of such orbitals, i.e. that they are
exact for atoms within the given xc-functional, allows one to use a small
basis-set size and still get reasonable accuracy.

4.2.4 Basis Set Superposition Error

Let us assume that we have some atom-centered basis set, which move along
with the atoms in the system. Then, if we have a system of interacting
constituents described by incomplete basis-sets, each constituent will lower
its energy by taking advantage of part of the other constituent’s basis. This
will of course introduce an unphysical effect in the calculation of interaction
energies due to the better description of the constituents when they are
interacting (in a complex) than when they are isolated.

The most widely used method to handle this Basis Set Superposition
Error (BSSE) has been the “Counterpoise” method of Boys and Bernardi [7].
This consists in providing the isolated constituents with the full basis they
would have in the interacting complex. For instance, if we have a complex
AB made up of two interacting constituents A and B, the Counterpoise-
corrected interaction energy is

∆E(AB) = A(AB, rp)AB − E(A, rc)AB − E(B, rc)AB, (4.10)

where rp indicates the geometry of the product AB, rc the geometry of
the constituents and the superscript AB indicates that the energies are
calculated with the same basis, i.e. the basis of the product.

4.3 Real-Space and Finite-Differences

With the real-space finite-difference method, the wavefunctions, density and
potential are directly calculated on a grid, instead of using basis functions.
Differentiation is the major basic operation we need in order to discretize
the Kohn-Sham equations. The k−th order derivative of a function f(x) at
a grid point x = ihx is approximated by the finite-difference formula

d(k)

dx(k)
f(x)

∣∣∣
x=ihx

≈
Nf∑

n=−Nf

c(k)
n f(ihx + nhx), (4.11)
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where Nf sets the accuracy of the finite-difference approximation and hx

is the grid spacing along the x direction. The weights c(k)
n are determined

using the Taylor expansion.
The one-dimensional Kohn-Sham equation discretized in real space is

thus given by

−1
2

Nf∑
n=−Nf

c(2)
n ψ(ihx + nhx) + V eff (ihx)ψ(ihx) = εψ(ihx). (4.12)

As for plane-wave approaches, the desired accuracy can be increased in
a simple definite manner, which consists in reducing the grid-spacing and
improving the order of the finite-difference approximations.

Although finite-difference methods have been very common in scientific
applications for decades, they have been gaining focus only recently in first-
principle calculations. This means that one can take advantages of highly
developed and optimized techniques, such as multi-grid methods [9]. Effi-
cient parallelization by domain decomposition is easily achieved, enabling
the use of massively parallel supercomputers [25]. Furthermore, since ar-
bitrary boundary conditions are available in real space, this approach can
reproduce the conditions of an actual experiment.

We finally note that, since all calculations are carried out in real-space, it
is possible to incorporate a local basis set within the same implementation.



Chapter 5

LCAO in PAW

Most of the available implementations of the PAW method use a plane-
wave basis set to expand the pseudo wavefunction ψ̃n [28, 23, 16]. The
GPAW code [1] implements a real-space approach, by evaluating ψ̃n on a
grid and using finite-difference methods. These approaches have proven very
useful and they compare well to pseudopotential results in most cases [23].
Nevertheless PAW methods perform significantly better for evaluation of
magnetic energies [23]. They also compare remarkably well to all-electron
calculations of electric field gradients [31], magnetic hyperfine parameters
[6] and NMR chemical shifts [32].

In this chapter we will expand the pseudo-wavefunction ψ̃n onto a local
basis-set, constructed as a linear combination of atom-centered functions
which we will abbreviate “LCAO”1.

Numerical local orbitals have been previously employed in DFT, using
either all-electron [27, 20] or pseudopotential methods [18]. There are at
least two relevant areas where this approach has proven very useful:

1. very large systems with many atoms per unit-cell or with vacuum
regions, where plane-waves becomes expensive to use [3] [35];

2. combination with Green’s functions-type methods, that take direct
advantage of the locality of the basis [8].

To my knowledge this is the first implementation of a localized basis in
the Projector Augmented Wave method. It should be stressed that the two
different “modes”, i.e. grid and localized basis, share exactly the same set
of approximations, which is also a unique feature.

1Linear Combination of Atomic Orbitals. Strictly speaking, we use atomic-like func-
tions.

33
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5.1 LCAO basis-sets

We use atom-centered orbitals that are the products of numerical radial
functions and spherical harmonics

Φnlm(r) = ϕnl(ra)Ylm(r̂a), (5.1)

where ra = r−Ra is the position of nucleus a.
The Kohn-Sham wavefunction is then expressed as the expansion

ψn =
∑
N

cµnΦµ, (5.2)

where µ = (n, l,m) is a combined quantum label.

5.1.1 Naming conventions

By following the well-established notation of the quantum chemistry com-
munity, we classify the basis-set according to the number of basis functions
which are used for each atomic element. If only one radial function ϕnl

for each occupied valence2 orbital |nl〉 is used, we have what is known as a
“Single-Zeta” (SZ) basis-set, also known as a “minimal” basis. For example,
a SZ basis for hydrogen contains just one s−type function.

Multiple-Zeta sets are obtained by generating multiple functions for each
valence state of the given atom. For example a Double-Zeta (DZ) basis set
for H consists of 2 s−type functions, while for O it consists of 2 s−type
plus 2 × 3 p−type functions, i.e. 8 basis functions. Multiple-Zeta orbitals
are generated in such a way as to improve the radial flexibility of the basis-
set.

(a) (b)

Figure 5.1: DZP basis for H (a) and O (b)

In order to improve the angular flexibility, higher angular momentum l
functions, termed “polarization” functions, are added to the set, making it

2in contrast with quantum-chemical all-electron methods, where basis functions for
core states are also needed.
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a polarized basis-set. This is usually achieved by adding a function with
angular momentum l + 1 where l is the highest occupied valence orbital of
the isolated atom. If only one polarization function is added on top of a
single-zeta basis, we have what is known as “Single-Zeta Polarized” (SZP)
basis. Similarly we can obtain double-zeta polarized (DZP) or even larger
basis-sets. As an example, a DZP basis for O consists of 8 functions from
the DZ part, plus a d−type orbital (m = −2,−1, 0,+1,+2) which gives 13
functions in total. Multiple-polarized basis sets can also be constructed.

5.1.2 Generation

In order to take advantage of the sparsity of the Hamiltonian and Over-
lap matrices in the basis-set representation, we use strictly localized basis
orbitals, i.e orbitals that are identically zero beyond a given radius. As pro-
posed by Sankey and Niklewski [34, 33], and successfully implemented in the
SIESTA method [18], we take the SZ basis orbitals ϕnl to be the pseudo-
eigenfunctions of the isolated atom confined in some spherical potential well
V conf (r)(

− 1
2r

d2

dr2
r +

l(l + 1)
2r2

+ V eff (r) + V conf (r)
)
ϕnl = εnlϕnl. (5.3)

The confinement potential is constructed so that it is constant in the core
region, starts off at some radius ri with all derivatives continuous, and di-
verges at rc, so that any orbital is strictly localized. The explicit form is
[19]

V conf (r) = V0
e−(rc−ri)/(r−ri)

rc − r
. (5.4)

An infinite spherical well, as originally proposed in [34], would involve just
one parameter rc (instead of three rc, ri, Vo) but would generate basis orbitals
with derivative discontinuity for r = rc. This kink might cause numerical
problems when differentiated wavefunctions are needed, for instance in a
force calculation. As it is natural for different orbitals to have different
cut-off radii rc, we define a common energy-shift δεnl

δεnl = εnl

∣∣∣
V conf 6=0

− εnl

∣∣∣
V conf=0

, (5.5)

i.e. the shift in the corresponding eigenvalue when the confining potential
is switched on. The cut-off radius is then found by specifying δεnl and
requiring that (5.3) is fulfilled with εnl + δεnl as eigenvalue. In practice, we
use a common energy shift for all orbitals, denoted by ∆E.

As for multiple-zetas, we use the standard quantum chemical “split-
valence method” adapted to numerical orbitals [12]. According to this pro-
cedure, the DZ function is obtained by mantaining the same tail as the SZ,
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but changing to a 2nd order polynomial inside some split-radius rnl
s :

εDZ
nl (r) =

{
rl(anl − bnlr

2) if r < rnl
s

ϕSZ
nl (r) if r ≥ rnl

s

(5.6)

where anl and bnl are determined to ensure continuity of value and derivative
at rnl

s . The split-radius rnl
s is determined by specifying the “tail-norm”, i.e

the value of
∫ rnl

c

rnl
s
ϕSZ

nl dr
3. In practice, in order to get shorter ranged basis

functions, we use ϕSZ
nl − ϕDZ

nl as second-zeta orbital.
The basis orbitals described so far are all-electron functions. Since they

should be used to expand the pseudo-wavefunctions ψ̃n, we need to apply
the PAW transformation so that we obtain the pseudo basis functions:

|ϕ̃mZ
nl 〉 = T̂ −1 |ϕmZ

nl 〉 , (5.7)

where the superscript mZ denotes a generic Multiple-Zeta basis.
Polarization functions are taken to be simple pseudo-gaussian with a

given width rl
char

ϕP
nl(r) = rl+1e

−( r

rl
char

)2

. (5.8)

This simple approach has proven very satisfactory despite its simplicity.
Indeed it compares really well to more sophisticated methods, such as per-
turbation of the isolated atom by electric fields as done in SIESTA.

In order to optimize a basis set, the free parameters ri, V0, rs and rchar

can be variationally optimized for some reference systems. A more detailed
and comprehensive description about the generation of basis functions can
be found in Ask Hjorth Larsen’s master thesis.

5.1.3 Bloch states

In order to fulfill the Bloch condition (4.1)-(4.2) with a local basis-set, we
seek solutions of the Kohn-Sham problem which resemble the Tight-Binding
problem

ψ̃nk(r) =
∑
R

eik·Rψ̃n(r−R), (5.9)

where R spans all the Bravais lattice and k takes the values allowed by the
periodic boundary conditions only within the first Brillouin zone.

By plugging the expansion (5.2) into (5.9) we get

ψnk(r) =
∑
µR

cµnkΦµ(r)eik·R, (5.10)

3Strictly speaking, this is not a norm, but rather a “tail-area” since the integrand is
not squared.
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i.e. the wavefunctions become complex and k-dependent. Note that this is
equivalent to consider the unit-cell being reproduced in space. Each contri-
bution from a different phase factor then corresponds to a contribution from
a neighboring cell ( Fig. 5.2). In practice we add supplementary cells as far

Figure 5.2: Unit cell and neighbouring mirror-cells.

as their basis orbitals have non-zero overlap with the unit-cell.

5.2 Kohn-Sham equations in the LCAO basis

The variational freedom in the Kohn-Sham minimization procedure is dras-
tically reduced by employing a basis-set, because the Kohn-Sham equation
is to be solved for each expansion coefficient cµn in (5.2) instead of at each
grid point. By inserting (5.2) in the PAW Kohn-Sham equation we obtain
the matrix equation

˜̂
HC = εŜC, (5.11)

where the eigenvectors C contain the coefficients {cµn}. The PAW Hamil-
tonian is, as derived in Chapter 2,

˜̂
H = −1

2
∇2 + uH [ρ̃] + vxc[ñ] +

∑
a

∑
i1i2

|p̃a
i1〉∆H

a
i1i2 〈p̃

a
i2 | . (5.12)

The matrix elements of the first and last terms involve only two-center in-
tegrals, which we calculate analytically in the reciprocal space and tabulate
as a function of the distance vector. Since densities and potentials are cal-
culated on a grid, the remaining terms must be integrated numerically.
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5.2.1 Overlap operator

Since we use a non-orthogonal basis, the matrix elements of the Kohn-
Sham wavefunctions with the PAW overlap operator 〈ψ̃ik|Ŝ|ψ̃jk〉 acquire
some basis-specific overlap contributions. Since Bloch states belonging to
different k-points are orthogonal, and since the PAW overlap operator does
not couple different k-points, we just need to consider matrix elements be-
tween states at the same k-point.

By expanding the wavefunction onto the Bloch basis (5.10) and inserting
it into the expression for the PAW overlap operator (3.51), we obtain

〈ψ̃ik| Ŝ |ψ̃jk〉 =
∑
µ,R

∑
ν,R′

c∗µikcνjk 〈Φ̃µR|Φ̃νR′〉 eik·(R′−R)+

+
∑
µ,ν

∑
a,Q

∑
R,R′

∑
i1,i2

c∗µikcνjk 〈Φ̃µR|p̃a,Q
i1
〉∆Sa

i1i2 〈p̃
a,Q
i2
|Φ̃νR′〉 eik·(R′−R),

(5.13)

where R,R′ refers to cells where basis functions are located and Q is the cell
where the projector of atom a is located. Rearranging the terms and noting
that the inner products depend only on the relative position of the centers,
we obtain the final expression for the overlap between state |i〉 and |j〉

〈ψ̃ik| Ŝ |ψ̃jk〉 =
∑
µ,ν

c∗µikcνjk

∑
R̄

〈Φ̃µ0|Φ̃νR̄〉 e
ik·R̄+

+
∑
µ,ν

c∗µikcνjk

∑
a,i1,i2

∆Sa
i1i2

(∑
R

〈Φ̃µR|p̃a,0
i1
〉 eik·R

)(∑
R′

〈p̃a,0
i2
|Φ̃νR′〉 eik·R′

)
,

(5.14)

where R̄ = R′ −R.

Note that in expression (5.14) we can recognise the usual PAW form,
that is to say a first delocalized term plus the atomic corrections inside the
augmentation spheres.

5.2.2 Hamiltonian operator

The Hamiltonian contains the same types of terms as the overlap operator.
It is derived by expanding the wavefunction onto the basis-set (5.2) and
plugging it into the expression for the PAW Hamiltonian operator (5.12).
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We then obtain

〈ψik| Ĥ |ψjk〉 =
∑
µ,ν

c∗µikcνjk

∑
R̄

〈φµ0|T̂ |φνR̄〉 e
ik·R̄+

+
∑
µ,ν

c∗µikcνjk

∑
R̄

〈φµ0|V̂eff |φνR̄〉 e
ik·R̄+

+
∑
µ,ν

c∗µikcνjk

∑
a,i1,i2

∆Ha
i1i2

(∑
R

〈φµR|p̃a,0
i1
〉 eik·R

)(∑
R′

〈p̃a,0
i2
|φνR′〉 eik·R′

)
.

(5.15)

As we see from (5.15), the main ingredients are the matrix elements of
the kinetic operator and the inner products between basis functions and
projectors. The following section describes how they can be calculated an-
alytically.

5.3 Two-center integrals

All the two center integrals which do not involve potentials on the grid are
calculated analytically in Fourier space, following [34, 18]. Let us consider
a general overlap integral

Θ(R) = 〈X1|X2〉 =
∫
X ∗

1 (r)X2(r−R)dr, (5.16)

where the integral is over all space and Xi are localized functions which can
be expressed as a product of a radial function times a spherical harmonic

X (r) = χl(r)Ylm(r̂)

χl(r) =
∫ π

0
sin θdθ

∫ 2π

0
dϕY ∗

lm(θ, ϕ)X (r, θ, ϕ).
(5.17)

By noting that Θ(R) can be seen as a convolution, we write it as a product
in the Fourier space

Θ(R) =
∫
X ∗

1 (k)X2(k)e−ikRdr, (5.18)

where
X (k) =

1
(2π)(3/2)

∫
X (r)e−ikrdr. (5.19)

Let us expand a plane wave in spherical harmonics

eikr =
∞∑
l=0

l∑
m=−l

4πiljl(kr)Y ∗
lm(k̂)Ylm(r̂) (5.20)
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where jl(kr) is a lth order spherical Bessel function and insert it into (5.19)
to obtain

X (k) = χl(k)Ylm(k̂) (5.21)

χl(k) =

√
2
π

(−i)l

∫ ∞

0
r2jl(kr)Xl(r)dr (5.22)

Finally, by substituting (5.21) and (5.22) into (5.18) we obtain

Θ(R) =
∞∑
l=0

l∑
m=−l

Θlm(R)Ylm(R̂), (5.23)

where
Θlm = Gl1m1,l2m2,lmΘl1,l2,l(R) (5.24)

Θl1,l2,l = 4πil1−l2−l

∫
k2jl(kR)i−l1χ∗1,l1(k)i

l2χ2,l2(k)dk. (5.25)

The Gaunt coefficients Gl1m1,l2m2,lm are non-zero only if l1−l2−l is even and
they are tabulated. The functions Θl1,l2,l are calculated and stored on a grid;
the values at any distance R can be looked up using a spline interpolation.

5.3.1 Fast Fourier-Bessel transform

In order to obtain (5.22) and thus any two-center integrals, we need to
calculate efficiently integrals of the form

χl(k) =

√
2
π

(−i)l

∫ ∞

0
r2jl(kr)χl(r)dr. (5.26)

The spherical Bessel functions can be written, in general, as

jl(kr) =
P s

l sin(kr) + P c
l cos(kr)

(kr)l+1
, (5.27)

where P s,c
l are polynomials. By using trigonometric identities, we can write

jl(kr) =
1

(kr)l+1
<
[
Pl(kr)e−ikr

]
, (5.28)

where Pl(kr) = P c
l (kr) + iP s

l (kr) and it obeys the recurrence relation [2]

P0(kr) = i
P1(kr) = i− x
Pl+1(kr) = (2l + 1)Pl(kr)− (kr)2Pl−1(kr).

(5.29)
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In order to apply the Fast Fourier Transform algorithm we write Pl(kr) =∑l
iCli(kr)i and get the coefficients Cli from (5.29):

χl(k) =

√
2
π

(−i)l

∫ ∞

0

r2

(kr)l+1
<

[∑
i

Cli(kr)l+1e−ikr

]
χl(r)dr

=
∑

i

ki−l−1<
[
CliFFT{r1+i−lχl(r)}

]
,

(5.30)

where the FFT operator is a fast discrete Fourier transform, defined as

X [k] =
n−1∑
m=0

x [m] e−i 2πkm
n = FFT{x [m]}. (5.31)

Some technicalities concerning the implementation of this FFT are reported
in Appendix A.

5.4 Grid integrals

The matrix elements of the effective potential V eff = uH [ρ̃] + vxc[ñ] in the
Hamiltonian (5.11) are evaluated numerically on the real-space grid.

Because of the localized character of the basis orbitals, matrix elements
between basis orbitals which are far apart from each other are exactly zero.
In order to take advantage of this sparsity small auxiliary boxes are con-
structed around each atom, big enough to contain all of the atom’s basis
functions. Then, with the help of a neighbour list, we can evaluate the ef-
fective potential only in the regions where these boxes overlap. In this way
one doesn’t need to put the localized functions onto the large unit-cell grid.

5.5 Near linear dependence

The Kohn-Sham generalized eigenvalue problem (5.11) is well defined if ˆ̃H
is hermitian and Ŝ is positive definite. In this case, in fact, Ŝ is non-singular
and therefore invertible. The eigenvalue problem can then be solved for
the eigenvectors C. Linear dependence in the basis set results in a singular
overlap matrix Ŝ, thus making the problem ill-defined.

In periodic systems, the basis states are Bloch states, as seen before

Φµ(k) =
∑
R

Φµ(r−R)eik·R, (5.32)

where R is a lattice vector. When we have large overlaps between similar
basis functions, as is the case of e.g. crystals, then the basis-set can be-
come nearly linear dependent. Because of the finite numerical precision of



42 5. LCAO in PAW

the computation, this leads to a singular overlap matrix within the avail-
able accuracy [26]. Due to numerical noise we can even observe negative
eigenvalues in some pathological cases.

In other words, this phenomenon occurs when non-orthogonal basis func-
tions on different sites tend to produce large overlaps. This large off-diagonal
terms in the overlap matrix Ŝ can lead to very small eigenvalues, which
might be numerically troublesome. As a simple example which shows how
the problem might arise, let us consider a simple tight-binding model. For
the sake of simplicity let us assume a one-dimensional chain, with only one
basis orbital per atom and with nearest-neighbour overlap (hopping) s

ε(k) ∼ 2t cos(ka)
1 + 2s cos(ka)

. (5.33)

If we consider the gamma point, for further simplicity, we see that the energy
diverges, i.e. the overlap matrix becomes singular in the general case, when
s = −1/2.

In order to solve the problem, we diagonalize the overlap matrix Ŝ and
check the eigenvalues. If there are eigenvalues smaller than a given thresh-
old, they are removed, together with their correspondent eigenvectors. The
Hamiltonian is then diagonalized in this new, smaller, basis where the over-
lap Ŝ is diagonal.

5.6 Summary

In this chapter we have derived the expressions for the overlap and Hamil-
tonian operators in PAW, when a set of atomic-like functions is employed as
a basis. In order to set up the Kohn-Sham equation (5.11), we need to con-
struct the overlap operator and the Hamiltonian. The overlap operator itself
and all the two-center integrals between projector and basis functions are
calculated analytically through the Fourier-Bessel transform. The kinetic
matrix elements 〈φµ| − 1

2∇
2|φν〉 can also be calculated in the same way,

provided that we add an extra 1
2k

2 factor in (5.24), equivalent to the −1
2∇

2

operation in the reciprocal space. Since the density is represented on the
grid, matrix elements with the effective potential are integrated numerically:

〈ψik| Ĥ |ψjk〉 =
∑
µ,ν

c∗µikcνjk

∑
R̄

〈φµ0|T̂ |φνR̄〉︸ ︷︷ ︸
two−center

eik·R̄+

+
∑
µ,ν

c∗µikcνjk

∑
R̄

〈φµ0|V̂eff |φνR̄〉︸ ︷︷ ︸
grid−integral

eik·R̄+

+
∑
µ,ν

c∗µikcνjk

∑
a,i1,i2

∆Ha
i1i2

∑
R

〈φµR|p̃a,0
i1
〉︸ ︷︷ ︸

two−center

eik·R


∑

R′

〈p̃a,0
i2
|φνR′〉︸ ︷︷ ︸

two−center

eik·R
′

 .

(5.34)
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Here are a few remarks, which point out the relevant differences with a
full real-space grid calculation:

1. There is no need to put the Kohn-Sham wavefunctions on the grid,
since the variational parameters are the expansion coefficients of the
basis set.

2. The diagonalization of Kohn-Sham generalized eigenvalue problem is
done in one step, for the full Hilbert space spanned by the basis func-
tions. In the grid case, one needs to proceed iteratively.

3. Convergence has to be tested against the basis-set quality, and not
just against the grid spacing. This can be quite painful and requires
some practical experience in generating good basis-sets for a given
application.
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Chapter 6

Results

I have implemented the expressions derived in Chapter 5 in the GPAW
code. In this chapter I present the numerical results and performances of
this implementation, which I will call GPAW-LCAO in order to differentiate
if from the standard GPAW grid-mode. In order to do so, the GPAW-LCAO
scheme is applied to a variety of benchmark calculations against the GPAW
grid-mode results.

6.1 Convergence issues

6.1.1 Grid spacing

The main convergence parameter in GPAW is the grid spacing h, i.e. the
spacing of the 3D mesh used for the finite-difference method.

(a) N atom: energy convergence vs h (b) N2 molecule: energy convergence vs h

Figure 6.1: Convergence of total energy for a DZP basis ∆E =
0.01eV and for the grid.

As we see from figure (6.1), the convergence of total energy versus the
grid-spacing is faster with the LCAO basis than with the full-grid. This is
due to the fact that fewer objects are put on the grid in an LCAO calculation.
First of all the wavefunction is not present at all, as we only work with the

45



46 6. Results

expansion coefficient of the basis-set. Second, the kinetic-energy matrix
elements and the overlaps are calculated analytically. We also notice that
the LCAO energy only converges quantitatively towards the grid energy for
h→ 0

The convergence of total energy may not be important in real applica-
tions, but it is useful as a test for the LCAO since the grid result ideally
represents the complete basis-set limit. The more physical atomization en-
ergy is showed in (6.2) As we see, energy differences converge faster than

Figure 6.2: Convergence of atomization energies for a DZP basis
∆E = 0.01eV and for the grid.

total energies, due to error cancellations. Notice that the basis-set results
depend very weakly on the grid-spacing.

6.1.2 Basis size/quality

Unlike plane wave basis sets or real-space grids, there is no such thing as a
single parameter controlling the convergence with respect to the size of the
basis set. In fact, adding more basis orbitals does not automatically ensure
better accuracy. This is why we can talk about “quality” of a basis-set,
pointing out that the number of basis functions is not the only parame-
ter with a role in the resulting accuracy. Nevertheless, the split valence
method we employ shows rather systematic improvements in the accuracy
with increasing size of the basis, see Fig. (6.3).

Besides the number of basis functions, their cut-off radii play an impor-
tant role. For each particular application one has to find a trade off between
short-ranged basis functions, which improve efficiency, and longer ranged
functions, which improve accuracy. This is for instance especially important
for isolated atoms, for which a large cut-off is usually needed in order to
approach the grid result. See Fig. (6.4).
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(a) H2O atomization energy (b) H2O total energy

Figure 6.3: Convergence of total (6.3a) and atomization (6.3b)
energies for different basis sets with respect to the grid.

Figure 6.4: Total energy of N atom, relative to grid.

6.2 Small molecules

6.2.1 Atomization energies

In order to assess the results for small molecules, the atomization energies
for the G2-1 data-set ([11]) are shown in figure (6.5). What I am plotting is
the basis set atomization energy minus the grid atomization energy, defined
as

∆Eat = Ebasis(mol)−
∑

atoms

Ebasis(at)−

(
Egrid(mol)−

∑
atoms

Egrid(at)

)
(6.1)

For the full plot, showing also all the DZ points falling out of the axis
range and for more data, see Appendix C.

Note the qualitative difference from 6.5a and 6.5b. In the latter the
energy shift is not small enough to converge the energy for the isolated
atoms. This is the reason why we observe points both above and below the
grid results. Once the isolated atom’s energy is converged, within a given
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(a) ∆E = 0.01eV

(b) ∆E = 0.1eV

Figure 6.5: Atomization energies of the G2-1 dataset of small
molecules for different basis sets and for two different energy shifts.
Energies are relative to the grid values.

basis-set, all the points move consistently above the zero-line, and converge
to it with increasing basis quality, from above as Ebasis(mol) becomes lower.
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The Mean Absolute Errors (MAE) corresponding to Fig.(6.5a) are shown in
Table 6.1.

MAE [eV] MAE % [eV]
DZ 1.71 20.4
DZP 0.36 4.45
TZP 0.25 3.02
TZDP 0.20 2.44

Table 6.1: Mean Absolute Errors to the grid for the atomization
energies of the G2-1 database for ∆E = 0.01eV

The same trend is observed for atomization energies calculated with the
SIESTA code and compared to plane-wave (PW) calculations performed
using the same pseudopotential. For example SIESTA underestimates the
binding energy of water with respect to PW’s by 0.37eV with a DZP basis
[19]. I have obtained a difference from the grid of 0.32eV with a DZP basis.

6.2.2 Bond lengths

Figure (6.6) shows two examples of total energy curves for molecules as a
function of the inter-atomic distance. Different lines refer to different basis
sets, as indicated in the legends.

Notice that the shape of the DZP curves, and hence their minima, is
very close to the grid result. As I have verified for several other molecules,
even smaller basis sets are often able to produce very good estimates of the
grid results.

It is also worth noting that the curves calculated with an energy shift
of 0.1eV have the same shape as the ones with 0.01eV . They are usually
translated in energy by less than 0.1eV with respect to each other, but
reproduce the same equilibrium value. The more computationally efficient1

0.1eV energy-shift can then be used without compromising the accuracy of
the result.

6.2.3 Computational details

The atomization energy is obtained as the difference between the total en-
ergy of the molecule and the sum of the energies of the isolated constituent
atoms

Ecohesive = Esolid(a0)−
∑

i

Eatom
i (6.2)

where i runs over the number of atoms in the unit cell. The atoms are cal-
culated in their spin-polarized ground state. The structure of the molecules

1Remember that basis orbitals generated with larger energy shifts are more localized,
and high efficiency requires the orbitals to be as localized as possible.
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Figure 6.6: Equilibrium bond lengths for a CO molecule (left panel)
and a LiH molecule (right panel). Full lines corresponds to an energy
shift of 0.01eV whereas dashed lines to 0.1eV .

has been fixed to the relaxed geometry from a grid calculation. The grid
spacing was set to h = 0.18Å and the size of the unit-cell to (12×13×14)Å.

The bond lengths are obtained by performing total energy calculations
with different distances between the atoms, selected in the range ±5% from
some accurate PBE result.

6.3 Solids

6.3.1 Theoretical equilibrium properties

The equilibrium bulk properties have been calculated for several crystals.
Different kinds of electronic behavior are considered in order to obtain a
good overview: simple metals (Li, Na, Al), semiconductors (AlP, Si, SiC),
ionic solids (NaCl, LiF, MgO) as well as transition metals (Ag, Cu). A
summary table is shown in table 6.2. All the calculations were performed
with the solids in their lowest energy crystal structure and spin-paired, i.e.
non magnetic ground states.



6.3. Solids 51

a(Å)
SZP DZ DZP TZP GRID

LiF 4.09 4.11 4.12 4.10 4.13
Ag 4.22 4.18 4.19 4.20 4.19
C 3.59 3.58 3.58 3.58 3.58
Na 4.22 4.32 4.30 4.27 4.20
MgO 4.30 4.32 4.31 4.28 4.28
Al 4.07 4.09 4.07 4.06 4.04
NaCl 5.68 5.70 5.69 5.69 5.71
Li 3.47 3.77 3.44 3.45 3.45
SiC 4.41 4.48 4.40 4.40 4.41
Si 5.51 5.58 5.50 5.49 5.48
AlP 5.54 5.58 5.53 5.53 5.52
Cu 3.65 3.66 3.66 3.66 3.66
MAE 0.023 0.073 0.022 0.016
MAE % 0.51 1.79 0.50 0.37

Ec(eV)
SZP DZ DZP TZP GRID

LiF -4.10 -4.18 -4.24 -4.27 -4.21
Ag -2.22 -2.32 -2.38 -2.43 -2.56
C -7.29 -7.49 -7.67 -7.69 -7.72
Na -0.93 -1.01 -1.01 -1.02 -1.11
MgO -3.66 -4.79 -4.79 -4.86 -4.95
Al -3.33 -3.20 -3.36 -3.37 -3.44
NaCl -2.92 -3.10 -3.09 -3.10 -3.14
Li -1.54 -1.25 -1.58 -1.58 -1.62
SiC -6.02 -5.74 -6.20 -6.22 -6.52
Si -4.28 -4.09 -4.48 -4.50 -4.56
AlP -3.84 -3.68 -3.98 -3.98 -4.11
MAE 0.346 0.281 0.111 0.095
MAE % 9.02 8.10 3.35 2.88

B(GPa)
SZP DZ DZP TZP GRID

LiF 83.5 74.9 64.5 73.1 65.8
Ag 80.1 84.1 81.6 86.2 91.1
C 414.8 441.3 433.7 433.9 434.3
Na 7.9 7.9 7.0 7.0 8.0
MgO 157.9 166.8 156.9 144.0 143.5
Al 76.2 91.5 69.4 76.2 78.3
NaCl 28.7 27.6 25.6 25.3 23.4
Li 16.4 7.0 16.5 14.8 14.1
SiC 207.8 205.9 216.1 210.2 195.9
Si 83.5 72.0 85.4 87.5 88.8
AlP 78.3 81.5 80.3 81.4 80.3
Cu 140.4 164.3 133.6 131.5 119.7
MAE 8.327 9.000 5.718 3.227
MAE % 10.08 13.75 7.85 5.03

Table 6.2: Lattice constants a, cohesive energies Ec and bulk moduli
for selected solids. Errors are relative to the converged grid results.
∆E = 0.01eV for all the basis sets.
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The overall agreement with the real-space grid is very good, that is to
say about 0.5% mean absolute error in the computation of lattice constants,
3% in cohesive energies and 5-8 % for bulk moduli. Notice than in many
cases a remarkably good results can be obtained with a small SZP basis,
especially for a and B.

As a benchmark against other available methods, I report some results
for the SIESTA code in table 6.3. Note that these results were obtained
with accurately optimized basis-sets and with the LDA approximation for
the exchange and correlation functional. The deviation of the basis results
from the plane-wave results compares well with the deviations of our basis
results from the grid.

a(Å) Ec(eV) B(GPa)
DZP PW DZP PW DZP PW

C 3.53 3.54 8.90 8.81 466 453
Si 5.38 5.40 5.37 5.31 96 97
Na 3.95 3.98 1.22 1.22 8.8 9.2
MgO 4.10 4.11 11.90 11.87 168 167

Table 6.3: Siesta (DZP) results compared to plane wave calculations
(PW) using the same pseudopotential. Adapted from [19].

Details on how the theoretical equilibrium properties have been calcu-
lated are reported in the following section.

6.3.2 Band structures

Another benchmark calculation for solid-state crystalline systems is the band
diagram. Figure (6.7) and (6.8) shows the calculated band structure respec-
tively for bulk Silicon and for a 2D graphene sheet. The band structures
are calculated along the Γ − X direction of the Brillouin zone. Excellent
agreement with the grid result is achieved.

6.3.3 Computational details

In order to obtain the equilibrium properties of the solids, the total energy
per unit cell has been calculated for 7 different lattice distances in the range
±2% from some accurate PAW-PBE calculation.

The minimum of the total energy curve versus the lattice distance gives
the equilibrium lattice constant. This is calculated by finding the minimum
of a second order polynomial fitted to the data

The cohesive energy is obtained as the difference between the total energy
of the solid calculated at the theoretical equilibrium a0 and the sum of the
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Figure 6.7: Band structure of bulk Si. Basis set points are repre-
sented by red squares and grid points by blue crosses.

Figure 6.8: Band structure of graphene. Basis set points are rep-
resented by red squares and grid points by blue crosses.

energies of the isolated constituent atoms

Ecohesive = Esolid(a0)−
∑

i

Eatom
i , (6.3)

where i runs over the number of atoms in the unit cell. The atoms are
calculated in their spin-polarized ground states.
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The bulk modulus is calculated as

B = V
∂2E

∂V 2

∣∣∣
V =V0

, (6.4)

where V is the volume of the unit cell and V0 is the theoretical equilibrium
volume. This expression is evaluated by fitting the data to a third order
polynomial.

The band structures are obtained by calculating the density with a stan-
dard self-consistent Kohn-Sham calculation. The energies at different k-
points are then evaluated through the non self-consistent Harris functional,
i.e. keeping the density fixed.

6.4 NEGF and Electron Transport

Non-equilibrium Green’s functions can be combined with DFT to investigate
electron transport in the so called NEGF-DFT scheme [8]. The structure
and the electronic properties are calculated with DFT, and the Kohn-Sham
Hamiltonian in a localized representation is used to calculate the Green’s
functions of the system. They are in turn used to calculate the Landauer-
Buttiker transmission function. The zero-temperature, linear response con-
ductance of non-interacting electrons through a scattering central (C) region
between to leads (L,R) is given by

G(ε) = G0T (εF ), (6.5)

where G0 = 2e2/h is the conductance quantum and T (ε) is the transmission
function, given by

T (εF ) = Tr[Gr(ε)ΓL(ε)Ga(ε)ΓR(ε)], (6.6)

where ΓL/R are related to the self-energies ΣL/R of the leads by

ΓL/R = i(ΣL/R − Σ†
L/R). (6.7)

In order to evaluate these expressions, the Kohn-Sham Hamiltonian and
overlap matrix needs to be expressed in a localized basis.

Figure 6.9 shows the remarkably good agreement between the transmis-
sion function calculated with SIESTA (dotted line) and with GPAW-LCAO
(full line) for an infinite aluminum mono-atomic wire with atomic hydrogen
adsorbed.
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Figure 6.9: Transmission function for Al mono-atomic wire with
adsorbed H. The red dashed line is the transmission function for the
infinite bare wire.
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Chapter 7

Conclusion and Outlook

The benchmark results presented in Chapter 6 demonstrate good agreement
between the PAW results one can obtain with efficient basis sets and with the
grid. Since nothing comes for free, one has to put some efforts in generating
good basis sets for a given application. Nevertheless the approach we employ
seems to provide a quite systematic method to improve the quality of a given
basis.

It is worth noting that the errors with respect to a grid calculation lie well
within the accuracy of the PBE functional. As showed in [17], for example,
the mean absolute error of the PBE functional for cohesive energies of solids
is 0.16eV . Our mean absolute error to the grid is 0.11eV with a DZP basis.

The work presented in this thesis is the first implementation of a localized
basis in the PAW formalism, and hence it needs further investigation in order
to fully understand strengths and limits.

Future plans include testing the basis results for large realistic systems.
In order to do this, it will be necessary to implement a correction scheme
for the basis set superposition error. The Counterpoise method could be
employed by introducing “ghost” atoms, i.e. special PAW setups only con-
taining basis functions but no electrons and nuclear charge.

Some work could also be done in order to obtain optimized high-quality
basis sets. A method to variationally optimize1 a given basis should be
developed in order to both simplify the generation procedure and to go
beyond the restrictive energy-shift criterion for fixing the cut off radii of the
basis orbitals.

The parallelization, already implemented in a preliminary form, needs
to be optimized in order to fully test the capabilities of handling very large
and complex systems.

1i.e. optimize the parameters which enter the expression for a given basis function by
minimizing the total energy of some reference system.
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Appendix A

Fast Fourier Transform

The discrete Python FFT is defined as

X [k] =
n−1∑
m=0

x [m] e−i 2πkm
n = FFT{x [m]}. (A.1)

where x [m] is an input array, in our case some localized functions, and X [k]
is the output array in the reciprocal variable k.

The FFT algorithm is most efficient when the number of grid points
of the input array is N = 2x, where x is a even integer. Most modern
implementations are less restrictive and allow for different lengths as well.
In the optimal case the number of operations scale as O(N log2N), as is
shown in (A.1).

Figure A.1: Fit of FFT time as a function of the number of grid
points showing the typical N logN scaling.
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In order to increase the spectral resolution, i.e. the resolution of X [k],
we can zero-pad the input array. In this way we both increase the resolution
and the efficiency, as we can select the length of the padding so that we get
N = 2x with an even x. I found N = 212 a reasonable compromise for the
number of grid points. This is also in agreement with the rule of thumb
which suggests a zero-padding to 4 times the input’s length.

A straightforward, though not optimal, way to select a reasonable N is
to look at the total energy of a simple system as a function of N and pick a
value that produces a well converged total energy.



Appendix B

Implementation details

Figure (B.1) shows the general structure of the GPAW code. The grey
rectangles represent Python classes. In red are the major new classes I have

Figure B.1: The “under-the-pillow” GPAW big picture.

implemented in order to handle a basis-set calculation.
The Hamiltonian class sets up the hamiltonian by adding together the

effective Kohn-Sham potential, which is calculated on the grid, and the ki-
netic energy, which is calculated analytically by a special TwoCenterIntegrals
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class. The latter class also calculates the overlap matrix which is used for
solving the generalized Kohn-Sham equations.

The K-point class no longer contains the Kohn-Sham wavefunctions,
but rather the expansion coefficients of the basis set. These are obtained as
solution of the Kohn-Sham equation, performed by the Eigensolver class.

The Eigensolver class includes a new eigensolver which diagonalizes
the Kohn-Sham hamiltonian in one go, within the basis-set representation.
It also takes care of removing possible linear dependence which would cause
the overlap matrix to become singular and thus the diagonalization to fail.



Appendix C

Scalar relativistic
Schrödinger equation

In GPAW, projector functions and partial waves, i.e. the so-called “PAW-
setups”, are generated taking into account scalar-relativistic effects. In or-
der for the basis functions to be consistent with the corresponding setups,
we generates the single-zeta functions from a scalar-relativistic all-electron
equation

−d
2unl

dr2
− α2

2M
dV eff

dr

(
dunl

dr
− unl

r

)
+
[
l(l + 1)
r2

+ 2M(V eff − εnl)
]
unl = 0

(C.1)
where M is the relativistic electron mass

M = 1− α2

2
(V eff − εnl), (C.2)

unl(r) is r times the radial function and α ' 1/137 is the fine-structure
constant. Note that in the case of α → 0 one recovers the non-relativistic
limit.

Note that equation (C.1) contains the so called “scalar-relativistic” cor-
rections. This means that the spin-orbit coupling which appears in the Dirac
equation is dropped.

For most elements across the periodic table relativistic corrections for
the valence states are totally negligible as far as the ground state energetics
is concerned. For 4-d and 5-d metals, on the other hand, they can be quite
important in some cases. As an example, Fig C.1 shows the Single-Zeta basis
functions for Pt, generated from a non relativistic calculation (full lines) and
from a relativistic calculation (dashed lines)
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Figure C.1: Single zeta basis orbitals for Pt. Non relativistic states
are full lines, relativistic states are dashed lines.
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[31] H.M. Petrilli, P.E. Blöchl, P. Blaha, and K. Schwarz. Electric-field-
gradient calculations using the projector augmented wave method.
Physical Review B (Condensed Matter), 57(23):14690–7, 1998.

[32] C.J. Pickard and F. Mauri. All-electron magnetic response with pseu-
dopotentials: Nmr chemical shifts. Physical Review B (Condensed Mat-
ter and Materials Physics), 63(24):245101/1–13, 2001.

[33] Daniel Sanchez-Portal, Emilio Artacho, and Jose M. Soler. Analysis
of atomic orbital basis sets from the projection of plane-wave results.
Journal of Physics Condensed Matter, 8(21):3859–3880, 1996.

[34] O.F. Sankey and D.J. Niklewski. Ab initio multicenter tight-binding
model for molecular-dynamics simulations and other applications in
covalent systems. Physical Review B (Condensed Matter), 40(6):3979–
95, 1989.

[35] Daniel Snchez-Portal, Emilio Artacho, Jos I. Pascual, Julio Gmez-
Herrero, Richard M. Martin, and Jos M. Soler. First principles study
of the adsorption of c60 on si(1 1 1). Surface Science, 482-485(Part
1):39–43, 2001.



68 BIBLIOGRAPHY

[36] L. H. Thomas. The calculation of atomic fields. Proceedings of the
Cambridge Philosophical Society, 23:542–548, 1927.

[37] Y. Zhang and W. Yang. Comment on ’Generalized gradient approxi-
mation made simple’. Physical Review Letters, 80:890, 1998.


