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Overview

• The Python language

• The Atomic Simulation Environment (ASE)

– The anatomy of an atomic-scale simulation/calculation

– The ASE

• Examples

– Almost the simplest possible molecular dynamics simulation.

– Almost the simplest possible GPAW calculation.

• Using the DTU “databar” (computer lab).

• Computational projects
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BRIEF INTRODUCTION TO PYTHON

Part I
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Why Python?

• For the programmer: Python is object-oriented

– Object oriented and modular: Facilitates writing and maintaining complex problems.

– Dynamically typed: Flexibility, facilitates code reuse.

– Easy to write readable code: Code is maintainable.

– Large libraries available (numerics, plotting, …)

• For the user: Python is a scripting language.

– Great for scripting a calculation

– Great for small programs and prototypes.

– Great for interactive experimenting.

– Easy to learn.

– Objects are powerful in scripts!

• Python can be extended in C/C++/Fortran

– Solves performance problems of non-compiled languages.
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Learning Python

• Don’t waste money on Python books!

– It’s not that hard, and online docs are good.

• Python tutorial: http://docs.python.org/3/tutorial/

– More documentation at docs.python.org

• Learn Python + ASE + GPAW by example

– Get a simple script, and modify it.

– Simple scripts are almost like old-fashioned input files!
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A few places where Python is different

• See notebook!
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INTRODUCTION TO ASE AND GPAW

Part II
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import numpy as np
from ase import Atoms, units
from ase.io.trajectory import Trajectory
from ase.build import bulk
from ase.md.verlet import VelocityVerlet
from asap3 import EMT

# Create the atoms
atoms = bulk("Cu", "fcc", cubic=1).repeat([3,3,3])
atoms.set_pbc(False)
atoms.center(vacuum=5.0)
# Give the first atom a non-zero momentum
atoms[0].momentum = np.array([0, -11.3, 0])

# Prepare to do molecular dynamics, forces described by EMT
atoms.calc = EMT()
dyn = VelocityVerlet(atoms, 5.0*units.fs)

# Make a trajectory writing output every fifth timestep.
trajectory = Trajectory("MD-output.traj", "w", atoms)
dyn.attach(trajectory, interval=5)

# Now do 1000 timesteps.
dyn.run(1000)

Example: 

Molecular dynamics
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GPAW Example: Atomization energy of Hydrogen (1/2)

from ase import Atoms, Atom
from gpaw import GPAW

a = 4.  # Size of unit cell (Angstrom)
c = a / 2
# Hydrogen atom:
atom = Atoms('H',

positions=[(c, c, c)],
magmoms=[1],
cell=(a, a, a))

# gpaw calculator:
calc = GPAW(h=0.18, nbands=1, xc='PBE', txt='H.out')
atom.calc = calc

e1 = atom.get_potential_energy()
calc.write('H.gpw')

Continued…
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GPAW Example: Atomization energy of Hydrogen (2/2)

Continued …

# Hydrogen molecule:
d = 0.74  # Experimental bond length
molecule = Atoms('H2',

positions=([c - d / 2, c, c],
[c + d / 2, c, c]),

cell=(a, a, a))

calc.set(txt='H2.out')
molecule.calc = calc
e2 = molecule.get_potential_energy()
calc.write('H2.gpw')

print 'hydrogen atom energy:     %5.2f eV' % e1
print 'hydrogen molecule energy: %5.2f eV' % e2
print 'atomization energy:       %5.2f eV' % (2 * e1 – e2)
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The Atoms object

The Atoms object is the main simulation object.  It contains:

• Per-atom data: positions, velocities, charges, magnetic moments, tags.

• Global data: Unit cell, boundary conditions.

• Refs to helper objects: Calculator, constraints, …

Accessing the data:

r = atoms.get_positions() or r = atoms.positions

atoms.set_positions(r) or atoms.positions = r

f = atoms.get_forces() Will trigger a calculation, if needed.
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The Atoms object

Manipulating the Atoms object:

atoms.center(vacuum=5.0)   Centers in unit cell, possibly adjusting 

the amount of vacuum.

atoms.rotate(45, ’z’) Rotate the atoms

atoms.repeat([2,2,1]) Replicate atoms along x,y,z axes.

The Atoms object is a Python sequence:

atoms[i] The ith atom (starting at zero).

atoms += atoms2 Add more atoms

atoms1 + atoms2       Merge two atoms objects

for a in atoms: Loop over atoms

print(a.position)
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Manually specify the atoms:

from ase import Atoms

h2 = Atoms('H2', positions=[(0, 0, 0), (0, 0, 0.74)])

Known molecules and bulk structures:

from ase.build import molecule, bulk 

water = molecule('H2O')

si2 = bulk('Si', 'diamond', a=5.4) 

Simple surfaces:

from ase.build import fcc110 

slab = fcc110('Pt', (2, 1, 7), a=4.0, vacuum=6.0) 

Making systems
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GPAW essentials
• Grid mode – wavefunctions on a real-space grid

calc = GPAW(h=0.18, xc=’PBE’, …)

Parallelizes very well for large systems.  High accuracy

• Plane wave mode – wavefunctions in k-space

calc = GPAW(mode=PW(400), xc=…, …)

Faster than grid mode for small/medium systems.  High accuracy

• LCAO mode – wavefunctions in real space; with basis fct.

calc = GPAW(mode='lcao', basis=‘dzp’, h=0.18, …)

Fast but less accurate.
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COMPUTER EXERCISES AND THE

DTU “DATABAR”

Part III
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Increased IT security at DTU

• All external log in to DTU systems require two-factor login

• In our case the two factors are

– Your password

– A cryptographic key on your laptop
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The DTU “databar”

(computer labs)

Compute node
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node
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“linuxsh –X”
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Jupyter
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Remote login server

login.gbar.dtu.dk

gbarlogin
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The “databar” and the projects

• Information about the Summerschool projects:

wiki.fysik.dtu.dk/gpaw/

Includes detailed instructions on how to log in.

• Changing password in the HPC system (“databar”):

– Change at password.dtu.dk (takes up to 1 hour to sync)

– Download your SSH Secret key with original password!

• SLIDES available from the GPAW summerschool pages.
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Projects

• Excited states 

– Jakob Svaneborg and Jiban Kangsabanik

• Catalysis 

– Georg Kastlunger and Dipam Patel

• Magnetism

– Martin Ovesen and Varun Rajeev Pavizhakumari

• Batteries

– William Hansen and Lotte Kortstee

• Machine Learning

– Jesper Rask Pedersen and Armando Morin Martinez 

• Computational workflows

– Ask Hjort Larsen and Tara Boland
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Project: Excited states

• Calculate electronic band structures and bandgaps

• Calculate optical absorption

• Special methods:

– The GW approximation

– The Random Phase approximation

– Optional: The Bethe-Salpeter Equation



DTU CAMD Summer school 2024

Project: Catalysis

• DFT calculations of adsorption geometries of molecules on surfaces.

• Calculations of the reaction path and the transition energy

• Special methods:

– Nudged Elastic Band (for transition paths)

– Optional: Vibrational analysis for adsorption entropy
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Project: Magnetism in 2D

• Calculations of the critical temperature of a CrI3 monolayer

• Calculations of the noncollinear ground state in VI2

• Autodiscovery of new magnetic monolayers in the Computational 

2D Materials Database (C2DB)

• Special methods:

– Energy mapping analysis

– Noncollinear DFT calculations
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Project: Batteries

• Study the anode and cathode materials of a Li-ion battery with DFT

• Calculate the intercalation energy of Li in graphite, establish the equilibrium 

potential of a LiFePO4/C battery and determine important battery characteristics 

such as Li transport barriers and the voltage profile.

• Special methods:

– Structure creation and modification with ASE

– Unit cell relaxation

– Bayesian error estimation

– Nudged Elastic Band (NEB) calculations for estimating Li migration barriers
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Project: Machine Learning

• Machine Learning methods used on an example database

• Predicting band gaps and heat of formation using a structure 

“fingerprint”

• Predictions with several methods (e.g., ridge regression, decision 

tree, and gaussian process)

• Validation of predictions using DFT
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Project: Computational Workflows

• Learn to define tasks and workflows with TaskBlaster

• Use command-line tools to create and manage tasks in a directory 

tree

• Run a materials workflow on multiple materials
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