Parameter Optimisation for Grid-based
Projector Augmented Wave Method using

Downhill Simplex Algorithm

10302 — Electronic Structure Methods in Material Physics, Chemistry and Biology

220

Author:
Ask Hjorth Larsen, s021864

May 11, 2007

Technical University of Denmark
Lyngby

Abstract

The Grid-based Projector Augmented Wave method relies on a number of parameters
specifying properties such as cutoff radii between inner and outer atomic regions. Exhaus-
tive searching for optimal parameter choices are unfeasible due to calculation complexity.
This text documents the implementation of the downhill simplex method, an optimisation
algorithm which is capable of traversing a search space of such parameters and generating
new combinations that conform better to a set of conditions such as adherence of cal-
culated energies to reference values and similar properties. The algorithm is successfully
tested with nitrogen setups, and generated setups produce results which seem to be better
than default values. Further tweaking and testing can probably improve the algorithm
considerably.

Contents

Abstract i
Contents ii
1 Introduction 1
1.1 Density functional theory o 1
1.2 Grid-based Projector Augmented Wave method 2
2 The Grand Plan 2
2.1 Main properties of the algorithm 2
2.2 Test function principles L 2
3 Designing a setup evaluation function 3
3.1 Cell configurations and energy calculations 3
3.2 Preliminary calculations o 0L 4
3.3 Test functionso 5
3.4 Setup generation Lo 5
4 Optimisation procedure 7
4.1 The downhill simplex algorithm 7
4.2 Running the algorithm o000 8
4.3 Results and analysiso L 8
5 Conclusion 9
References 12
A Appendix 13
A1l atomization.py 13
A2 setupgen.py 15
A3 simplex.py . - . oL 16

1 Introduction

GPAW/[1], for Grid-based Projector-Augmented Wave method, is a Python software li-
brary implementing the projector-augmented wave method in a real-space grid, which is
used for numerical calculations in density functional theory. GPAW calculations involv-
ing an element, say nitrogen, use an element-specific setup which defines suitable DFT
parameters such as pseudo-wave function cutoff radius.

The purpose of this project is to find better GPAW setups using an optimisation
procedure which can generate and evaluate setups. The input values are various setup
generation parameters, and the output is a new set of such parameters generating a setup
which (hopefully) yields better results than the original.

We are in this case concerned only with the case of nitrogen and shall use only the
PBE approximations for exchange-correlation energies.

The following sections will provide a short summary of density functional theory and the
projector augmented wave method. Further, section 2 provides a complete — and more
technical — overview of the objectives and methods to be used. Section 3 documents
efficiency and precision considerations plus the design of the functions used to evaluate
setups. Finally Section 4 deals with the optimisation algoritm itself and the results.

It turns out that the algorithm successfully generates setups which do appear to yield
better results. More testing and general assessment still needs to be done, perhaps mostly
parameter tweaing. Longer optimisation runs might provide more information.

I am highly grateful for Jens Jgrgen Mortensens much-needed help in using GPAW.

Thanks also to Jan Rossmeisl for general information about density functional theory.

1.1 Density functional theory

In 1964 it was shown by Hohenberg and Kohn|5] that the electron density n(r), a quantity
of much greater simplicity than the entire electronic wave function, is sufficient to derive
all observable quantities with regards to the electronic behaviour of a quantum mechanical
system.

Specifically, two theorems were proven for the ground states and energies of many-
particle electronic systems:

e The energy of a system is a functional E[n] of the electronic density n(r). This
implies e.g. that two wave functions corresponding to different energies cannot cor-
respond to the same density. Furthermore the electron density uniquely determines
the wave function.

e The energy functional has a minimum FE[ng] at the electronic ground state ng.

The electron-electron interactions turn out to be highly expensive to include in cal-
culations. The Kohn-Sham equations provide one solution to this problem. Using these it
is possible to convert the N-particle problem into N one-particle problems, wherein the
effect of the multitude of electrons — barring the one under consideration — is replaced
by an effective potential Veg. There does exist a choice of potential which emulates the
presence of other electrons exactly, but unfortunately the derivation of this potential is
exceedingly difficult except for very simple systems such as the free electron gas. For
more complex systems variational methods are usually applied to determine the effective
potential.

A host of different methods have been used to implement density functional theory,
some of which use projector-augmented waves.

1.2 Grid-based Projector Augmented Wave method

GPAW is an implementation of the projector augmented wave method|2] using a real-
space grid rather than, say, its fourier transform, a k-space grid. The all-electron system
is subjected to a transform which allows the inner regions to be treated with spherical
symmetry, whereas the outer region, with the valence electrons, are treated differently.
“Projector functions” are used to join (or augment) the two solutions at some radius from
atom cores. In the outer region, the presence of the inner electrons is emulated by a
smooth pseudo-wave function. Suitable variables that can be optimised, such as in this
report, include the cutoff radii for the pseudo-wave functions.

2 The Grand Plan

The stated objective is to derive a method whereby it is possible to determine the in some
sense “optimal” parameters used to generate setups for GPAW.

GPAW setups are sets of information pertaining to specific atoms. There is one setup
for nitrogen using the PBE exchange-correlation functional, and this is the setup we are
interested in optimising. One such parameter to be varied is the cutoff radius from atom
cores within which pseudo-wave functions are used, but generally the setup generation
function serves as a black box, the details of which are not critical.

2.1 Main properties of the algorithm

The algoritm to be used is the downhill simplex method, which will be explained in detail in
Section 4.1. The method finds a (local) minimum of a function f : R™ — R by evaluating
function values only (not, say, derivatives).

The function to be minimized can therefore depend on any number of GPAW setup
parameters, and it must return something indicative of the setup quality (henceforth
referred to as the badness since it is to be minimized).

2.2 Test function principles

Evaluation of a setup involves five measures pertaining to precision, robustness and effi-
ciency, each of which can be calculated independently:

e The deviation of atomisation energy from reference value
e The deviation of bond length from reference value

e The sensitivity to sub-resolution coordinate translations
e The rate of solution convergence with resolution

e Calculation time

The badness function is defined as a weighted square sum of these. A GPAW setup which
scores well on all five tests is likely to be a good overall setup — if subsequent tests show
the contrary, the tests can be adjusted or expanded, and the weights can be changed. The
precise specifications for these test functions will be decided in Section 3.3

In conclusion: An optimisation process involves generating an initial setup with sen-
sible parameters (Section 3.4), then using the simplex algorithm (Section 4.1) to adjust
the parameters by means of repeated evaluations of the badness function (Section 3.3).

Atomic data for nitrogen

E, (PBE) 10.55 eV

E, (GPAW) 10.62 eV

Bond length 1.103 A
Magnetic moment (N) 3
Magnetic moment (N3) 0
Band count (N) 4
Band count (N3) 5

Table 1: Atomic data for nitrogen. The PBE energy value is taken from
[2], and the GPAW wvalue from [3].

In the next section GPAW calculations will be used to design these five test functions,
taking into account the necessary resolutions, cell sizes and other factors.

3 Designing a setup evaluation function

The purpose of this section is to determine the cell sizes and resolutions which must be
used in order to obtain sensible results. The relevant atomic data for nitrogen used in
the calculations are shown in Table 1. Recall that we will use the PBE functional for
exchange and correlation. For this reason the calculated PAW energies are compared to
those derived by all-electron PBE methods, which means a reference atomisation energy!
of 10.55 eV rather than the experimental value of 9.91 eV.

3.1 Cell configurations and energy calculations

Two different calculations are going to be relevant:

e The ground state energy E[N3](d) of a system consisting of two nitrogen atoms
at some separation d (not necessarily the bond length). The atoms are put on the
x-axis with the desired separation, i.e. at a/2+£(d/2,0,0) for a cell of size a x a x a).

e The atomization energy E, = E[N3](dy) — 2E[N], i.e. the difference between the
energy of a nitrogen molecule and twice that of an isolated nitrogen atom. The
molecular energy is obtained by spacing the atoms like in the previous case but
with fixed separation equal to the bond length dy. The calculations on isolated
atoms are performed with the atom located at the center of the otherwise identical
unit cell.

These functions can be run with any cell size ¢ and any grid spacing h. The duration of
a calculation is highly dependent on these factors since they determine the total num-
ber of grid points. Other variables are generally left at the GPAW calculator defaults
— exceptions to this will be specified when appropriate. The Python functions imple-
menting these calculations are available in Appendix A.1, and the relevant functions are
energyAtDistance and calcEnergy, respectively.

The setup in the case of two atoms can be seen on Figure 1. Next, a number of
calculations will be made to test these functions.

ISee [2], or [6]

y

X

Figure 1: Configuration with two nitrogen atoms. The y axis is col-
lapsed. The dashed lines indicate the unit cell, and the dotted lines the
centre, symmetrically about which the two atoms are arranged.

3.2 Preliminary calculations

As an overall saneness-test, Figure 2a shows the ground-state energy of a two-molecule
system as a function of the interatomic distance, i.e. an evaluation of E[Ns](d) for d =
0.6...2 A using 64 points with cell size a = 6 A and resolution h = 0.2 A (The GPAW
calculator parameter 1max? is set to 0 instead of the default value 2 during this calculation
because of errors occuring at smaller distances.).

Furthermore a very precise evaluation of F, using a fine grid h = 0.15, a large cell
a = 10 and 1max=2 yields a result of 10.60 eV which is very close to the GPAW value
from Table 1. Thus the written functions produce sensible results.

Next we shall test the impact of cell size on precision. Figure 2b shows a plot of the
atomization energy as a function of cell sizes 0.4 to 9.5 A for h = 0.2 A (this plot uses
non-default 1max=0 since the calculations crash for small cell sizes otherwise). A cell size
of 6A should be reasonable for most calculations.

Figure 2c shows the ground state energy of two nitrogen atoms as a function of the
grid resolution h. This plot also uses lmax=0. This calculation is done to investigate
convergence rather than an actual value, so the cell size is set to 4 A in order to speed
up calculation. Most calculations will use h = 0.2 A since smaller values take too much
time, even though smaller values still increase precision.

If the system is translated a small distance less than the resolution A, numerical
effects regarding the grid resolution will likely cause small undesirable deviations in the
calculated energies. In order to examine this effect, consider Figure 2d. The figure shows
the calculated energy of a nitrogen molecule aligned along the z-axis as a function of its
dislocation along the z-axis from 0 to h from the center of the unit cell. The plot is made
with the (small) cell size @ = 4.0 A (the cell size must be largely irrelevant for this effect)
and resolution h = 0.2 A. The system is periodic such that the part of the system which
slides out one side of the unit cell due to the dislocation does not have impact on the
result. This should mean that the deviation is periodic, which is indeed the case. Clearly

21max is the “maximum angular momentum for expansion of compensation charges”[4] and defaults
to 2. For “difficult” geometries this choice sometimes crashes the calculations with an error about charge
conservation violation.

the maximum energy fluctuation corresponds to dislocations of 0 and h/2, meaning that
the magnitude of this effect can be determined simply by taking the difference between
the energies at dislocations 0 and h/2:

§E = E._g— ey)o. (3.1)

3.3 Test functions

Five different tests are used to evaluate a GPAW setup, see Table 2.

1. The Energy test calculates E, like above for a = 6 A and compares it to the reference
value.

2. The Distance test calculates the bond length deviation from the reference value. This
is done by evaluating F[No] at three points close to the reference value, fitting with
a parabola and finding the minimum. Presently a spatial deviation 0.038 A is used,
giving an energy deviation of around 0.1 eV. Thus the three points of evaluation are
set to dy and do £0.038 A. This test uses the parameter Imax=2 since this improves
precision.

3. The Fluctuation test finds the sub-grid-resolution energy fluctuation amplitude by
evaluating F[Ns] at the center ¢ of the unit cell, and then again at ¢+ (0,0, h/2)
like in Equation (3.1). It might be better to do a test along the other axes as well,
but this presently has not been implemented because it increases calculation time.

4. The Convergence test evaluates F[Ns] for the three different A values 0.2, 0.17 and
0.15 angstroms. If the energy difference is small, the energy estimate at h = 0.2
A was good, meaning that the solution converges properly. The test returns the
difference between the largest and the smallest energy value.

5. Finally the Time test is supposed to evaluate the CPU time necessary to solve a
problem. This has not been implemented, so presently the wall-clock time T of the
other tests is used instead, which is crude, but works. If this test is not performed
then the algorithm might return a very precise but practically unusable setup.

The five tests are combined into a single measure of the setup badness by taking a weighted
square sum of all the test results (subtracting reference values where applicable). The
weights are selected such that a badness of 1 corresponds to a particular test result, and
these definitions can be seen in Table 2. If a test fails, i.e. an exception is thrown during
calculations, a badness of 10000 is returned as “penalty”. The source code can be found
in Appendix A.3, and the relevant function is called badness.

3.4 Setup generation

For reference, the parameters supplied to the setup generator along with default “sensible”
values are listed in table 3. Optimisation run may optionally be run without all of these
variables due to time constraints — the remaining parameters are made dependent on the
previous ones (see Appendix A.2 for source) to reduce the dimension of the search space
and thus calculation time.

The next section concerns the implementation of the actual algorithm.

(a) The energy of a system consisting
of two mnitrogen atoms as a function of
separation. The known bond length 1.103
A corresponds well to the location of the

(¢) The ground state emergy as a func-
tion of grid resolution h. The plateaus ap-
pear because some adjacent h-values cor-
respond to the same number of actual grid
points.

(b) Energy as a function of cell size. 6 A
or higher is required for reasonable preci-
sion

-1.837e1

(d) The energy as a function of trans-
lation along the z-axis of a nitrogen
molecule aligned along the x-axis. The
amplitude is around 13.9 meV, and the
deviation is clearly mazimal between dis-
locations of 0 and h/2.

Figure 2: Various tests used to decide suitable cell and GPAW calcu-

lator properties.

Test, overview

Name a Unit badness
Energy test 6.0 0.05 eV
Distance test 5.5 0.005 A
Fluctuation 4.0 5 meV
Convergence 4.0 0.2 eV
Time - 20 s

Table 2:
is defined

The five tests, the used cell sizes and the test result wich
to have a badness value of 1. All tests use h = 0.2 where

applicable, except the convergence test which varies h.

Default setup parameters

Name Default Description

r 1.1 Cutoff radius for projector functions
rvbar r Cutoff radius zero potential
rcomp r Cutoff radius for compensation charges
rfilter 2 r Cutoff for fourier-filtered projector function
hfilter 0.4 Target grid spacing

Table 3: The parameter identifiers and default values supplied to the
setup generator. These values are the ones adjusted when the algorithm
runs. All values are in Bohr units.

4 Optimisation procedure

By now we have defined a set of parameters to optimise, along with function to optimise.
Only the algorithm remains.

4.1 The downhill simplex algorithm

An n-dimensional simplex is the convex hull bounded by n + 1 (affinely independent)
points plus their interconnecting lines and faces. For example a two-dimensional simplex
is a triangle, and a three dimensional one is a tetrahedron.

The downhill simplex method|7, pp. 305-309] is an algorithm which can be used to
minimise a function f : R™ — R by evaluating the function on the n + 1 vertices of a
simplex in R™, then repeatedly moving the least-favourable points of the simplex (i.e. those
corresponding to high function values) in the general direction of the more favourable
points, possibly past them, and reevaluating f at the new location. The simplex will
thus be made to move across the parameter space R™ until hopefully a minimum of f is
obtained.

A detailed description of the algorithm follows.

Initialize a simplex with “reasonable” parameter values as the n+ 1 vertices p1 ... p,, and
evaluate f there. Then repeat the following steps:

e Find the vertex indices inigh,%2nd high and 1o with highest, second-highest and
lowest function values.

e Calculate the relative difference % between maximum and minimum func-
tion values. If this number is smaller than some tolerance, there is no appreciable
variation in the function here meaning that the vertices have converged on a mini-
mum, and the algorithm terminates. Otherwise continue.

e Reflect the point p; __ with highest function value through the opposite simplex
face and evaluate f here.

e If this yields a lower function value than the hitherto lowest, extrapolate some extra
distance (say, twice the distance) in the same direction and evaluate f there.

o FElse:

— If the reflected point is worse than the second-highest existing point, the min-
imum probably lies between the existing points; thus move the point back to
a location halfway between the original position p; . and the opposite face,
and evaluate f.

— If this new point still has the highest function value aomg the vertices, the
minimum must be near the currently best point. Contract all other points
halfway towards the best point and evaluate f at these all locations.

The source code can be found in Appendix A.3. The algoritm is split into two functions,
namely amoeba and the helper function amotry.

4.2 Running the algorithm

The algorithm can be run with any number of parameters. A start simplex of appropriate
dimension is generated pseudorandomly. Recall that most of the default parameter values
are around 1.1, so the initial points are distributed within 0.1 of the default values. The
algorithm writes parameters, badness values and tolerance evaluations to a log file. It also
saves the parameters and badness values of the last iteration in a dump file which can be
used as initial conditions for another test run.

Test runs presently take very long time. Only one test run has been made where all
five parameters are varied. For reasons of stability, all calculations use 1max=0

4.3 Results and analysis

The result of different test runs can be seen in Table 4. Consider the test run where all
five parameters are varied. A subsequent calculation using @ = 7 A yields an atomisation
energy of F, = 10.50 eV, considerably closer to the reference value of 10.55 eV than the
result 10.39 eV of the similar calculation using the default setup. However this is not
exactly surprising since the optimisation algorithm is designed to optimise exactly this
kind of problem. More general tests will have to be performed in order to better evaluate
the quality of the optimised setup, but time constraints prevent large-scale testing.

Figure 3 shows during the 5-parameter run the evolution of the variable which is
compared to tolerance during each iteration, i.e. the variable which ends the algorithm
when it gets small enough. Large values of this variable tends to indicate that the vertices
are moving large distances (or that the function to be optimised is oscillating weirdly).
It can be seen that while the value falls off and rises again repeatedly. The explanation
for this is most likely that the simplex contracts and expands “like an amoeba” when
traversing through shallow paths in the parameter space. However it also means that it
might take considerably more iterations than indicated, since the value might rise again
had a lower termination value been used. Note also that while there are 37 values on the
graph, the algorithm uses trial-and-error to decide whether to expand or contract — this
means that frequently more than one function evaluation is done per step. In this case
there were 79 function evaluations in total.

Figure 4 shows the badness progression for each vertex during the 5-variable run.
The values peak sharply at several points. This can only happen when the simplex is
contracted, which indicates that the algorithm thinks it has found a minimum. Evidently
this is not quite the case. A likely explanation is that the badness function is not very
smooth (which would make the optimisation proceed similarly smoothly), but full of 5-
dimensional saddle points which slow the algorithm. It is unclear how long the algorithm

Initial and optimised setup parameters

Name Default Optimised

r 1.1 1.021

rvbar 1.1 1.081

rcomp 1.1 1.148

rfilter 2.2 2.288
hfilter 0.4 0.4525

Table 4: The initial parameters and those obtained by running the op-
timisation algorithm.

0.4 4

0.3] 1

0.2f 4

0.1 b

L L L L L L L
0.0 5 10 15 20 25 30 35 40

Figure 3: Progression of the value of the termination parameter during
an optimisation run.

can run before finding an actual minimum. Nonetheless the derived parameters do yield
considerably different results as shown above.

Figure 5 shows the convergence of the parameter r as the algorithm progresses. This
plot is made during a two-parameter optimisation, so there are three simplex vertices
corresponding to three curves. In this case the values seem to converge quite well in
a limited amount of evaluations. The same will probably happen in more dimensions
although, as we have seen, the procedure takes more iterations to settle when more points
have to be moved.

5 Conclusion

The proposed algorithm has been written and is capable of generating GPAW nitrogen
setups which seem to yield values better than those of the default setup. The algorithm
has successfully been tested in a 5-dimensional parameter space. The algorithm relies on
five different tests to assess the quality of a given setup.

The parameter space is somewhat difficult and time consuming to traverse, and the

220

Figure 4: The badness values at each vertex during the 5-dimensional
optimisation run. The values peak sharply at several points. This can
only happen when the simplex is contracted, meaning that significant
deviations are observed even with small parameter changes.

1.14

1.06-

1.0

1.08- \

Figure 5: The convergence of the first coordinate of each
vertices during a lengthy two-variable optimisation run.

10

of the three

algorithm frequently speeds up after looking as if it were about to converge. For this
reason it is difficult to tell actual minima from what turns out to be saddle points. This
is in part a feature of the algorithm, and may not be a large problem. A very long test
run could be made to check the algorithm behaviour more properly.

It is possible that the present form of the badness function, i.e. as a sum of squares,
is not optimal. If one parameter outweighs other parameters considerably, some tests
will have little impact on the overall badness. This is partly remedied by selecting proper
weights, but there is no particular reason why a parabolic expressions should be inherently
better than, say, fourth order ones. More theoretical consideration might be given to the
badness function.

11

References

[1] GPAW home page: https://wiki.fysik.dtu.dk/gpaw

[2] J. J. Mortensen, L.B. Hansen and K. W. Jacobsen: Real-space grid implementation
of the projector augmented wave method, Phys. Rev. B 71, 035109. 2005.

[3] GPAW molecule tests at experimental geometries, as of May 11, 2007.
https://wiki.fysik.dtu.dk/gpaw/Molecule_Tests

[4] The GPAW manual as of May 11, 2007.
https://wiki.fysik.dtu.dk/gpaw/Manual

[5] P. Hohenberg and W. Kohn, 1964, Phys. Rev. 136, B864.

[6] S. Kurth, J. P. Perdew and P. Blaha: Molecular and Solid State Tests of Density
Functional Approximations: LSD, GGAs, and Meta-GGAs. Int. J. Quant. Chem. 75,
889-898. 1999.

[7] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.Vetterling: Numerical Recipes in C:
The Art of Scientific Computing, Cambridge University Press. 1988.

12

A Appendix

A.1 atomization.py

#!/usr/bin/python
import pylab

from ASE import Atom, ListOfAtoms
from gpaw import Calculator

wun
Utility classywrapping molecule_ informations

nbands1 and 2, ,are the numbers of bands to be used with_ single-atomg and

molecularcalculations , respectively
o

class MoleculeInfo:

def __init__(self, letter, d, magmom, nbandsl, nbands2):
self.d = d
self.letter = letter
self .magmom = magmom

self .nbandsl = nbandsl
self .nbands2 = nbands2

#Also test H2 (4.5 eV). magmom=1, nbands=1 in Calculator for H as well as H2

molN = MoleculeInfo(’N’, 1.103, 3, 4, 5)
molH = MoleculeInfo(’H’, 0.740, 1, 1, 1)

Creates an,atom.,If a, separation, greater, than,,0,,is, specified, creates
two,atoms correspondingly, spaced, along, the x axis.

Returns a_ ListOfAtoms containing, whatever was created_ in, this_ way
def getListOfAtoms (molecule=molN, separation=0, a=5., dislocation=(0.,0.,0.), periodic
=False):
atoms = None
(dx, dy, dz) = dislocation
(cx, cy, cz) = (a/2. + dx, a/2. + dy, a/2. + dz)
d = separation/2.
if separation==0:
#0ne atom only
atoms = ListOfAtoms ([Atom(molecule.letter, (cx, cy, cz),
magmom=molecule .magmom)],
periodic=periodic,
cell=(a,a,a))
else:
#Create two atoms separated along x axis
#No magnetic moment then!
atoms = ListOfAtoms ([Atom(molecule.letter, (cx+d,cy,cz)),
Atom(molecule.letter, (cx-d,cy,cz))],
periodic=periodic,
cell=(a,a,a))
return atoms

Calculates the atomizationgenergy,_ i.e. E[N2],-,2%E[N]_ where N2, ,and_ N denote

nitrogen moleculej and atoms, respectively

o

def calcEnergy(calci=None, calc2=None, a=4., molecule=molN, dislocation=(0,0,0),
periodic=False, setup=’paw’):

oneAtom = getListOfAtoms (molecule, a=a, dislocation=dislocation,
periodic=periodic)

if calcl == None:

calcl = MakeCalculator (nbands=molecule.nbandsl, setup=setup)
if calc2 == None:

calc2 = MakeCalculator (nbands=molecule.nbands2, setup=setup)

#bands: 2s and 2p yield a total of 4 bands; 1s is ignored

13

#setups=’A1° => will search for /home/ask/progs/gpaw/setups
oneAtom.SetCalculator (calcl)

/N.A1.PBE.gz

el = oneAtom.GetPotentialEnergy ()

#gpts=(n,n,n) - to be varied in multiples of 4

d = molecule.d

twoAtoms = getListOfAtoms (molecule, a=a, dislocation=dislocation,

periodic=periodic, separation=molecule.d)

#10 electrons in total from 2s and 2p.

#Thus it is necessary only to include 5 bands
twoAtoms .SetCalculator (calc2)

e2 = twoAtoms.GetPotentialEnergy ()

return e2-2xel

Using a particular resolution h, test whether energies deviate considerably

if ;theysystem_ is, translated ing intervals_ smaller_ than h.

def displacementTest(a=5., molecule=molN, h=.2):
print ’Displacement test:’, molecule

h += 0. #floating point

testcount = 3
dislocations = []

#Initialise test coordinates

for value in range(testcount):
coordinate = h * value/testcount #linear distribution
dislocations.append((coordinate, 0., 0.))

print dislocations

energies = []
for dislocation in dislocations:
#e = calcEnergy(a, molecule, dislocation, h)
e = energyAtDistance (molecule.d, dislocation, h)

energies .append (e)

print ’Energies:’
print energies

print ’Max’,max(energies)
print ’Min’,min(energies)
print °’Diff’ ,max(energies) - min(energies)

Creates two,calculators forythe, given moleculeywith appropriate
won

uband counts

def atomizationCalculators(molecule=molN, out=’-’, h=.2, Imax=0, setup=’paw’):
calcl = MakeCalculator (molecule.nbandsl, out, h, lmax, setup=setup)
calc2 = MakeCalculator (molecule.nbands2, out, h, lmax, setup=setup)

return (calcl, calc2)

Default, calculator, setup, however, complicated, it might become someday

This method allows_ you, to,forget about lmax and PBE, and, such
won
def MakeCalculator (nbands, out=’-’, h=.2, 1lmax

= setup=’paw’):
return Calculator (nbands=nbands, out=out, h

0,
=h, lmax=1lmax,

xc=’PBE’,setups=setup)

Calculates the_ ground-state energy_ of, the, given molecule_ when the atoms

are spaced_ by,the, given, distance
def energyAtDistance (distance, calc=None, dislocation=(0,0,0),
molecule=molN, a=5., periodic=False):
c = a/2.
(dx, dy, dz) = dislocation

14

coordl = (c-distance/2. + dx, ¢ + dy, c¢ + dz)
coord2 = (c+distance/2. + dx, ¢ + dy, ¢ + dz)
twoAtoms = getListOfAtoms (molecule, distance, a, dislocation,

periodic)

if calc == None:
calc = MakeCalculator (nbands=molecule.nbands?2)

twoAtoms .SetCalculator (calc)

energy = twoAtoms.GetPotentialEnergy ()
return energy

Writeplistsyuxpyandyyutoyspecified file
def writeResults(x, y, fileName, header=[]):
if len(x) != len(y):
raise Exception(’Resultylistylengthymismatch?’)
length = len(x)
f = open(fileName, ’w?’)
lines = [?’.join([str(x[i]),’\t’,str(y[il),’\n’]) for i in range(length)]

for line in header:
line = ’#,’+1line

f.writelines (header)

f.writelines (lines)
f.close ()

Readlist of (x,y)uentries, from datafiles , return, as two_ lists
o

def readResults(fileName):

f = open(fileName, ’r?’)

lines = filter(stringFilter, f.readlines())
length = len(lines)

pairs = [s.split() for s in lines]

x = [float(pair [0]) for pair in pairs]
y = [float(pair[1]) for pair in pairs]
return (x,y)

Allow, comments and, empty, lines, in, data files
W
def stringFilter(s):
return not (s.startswith(’#’) or s.isspace())

The, gbar doesn’t_ haveypylab_ so use_ this_ function
W
def linspace(start, end, count):
return [start + float(i)/(count-1)*(end-start) for i in range(count)]

A.2 setupgen.py

import os
from gpaw.atom.generator import Generator

class SetupGenerator:

def __init__(self, name):
#We don’t want anything to mess up with existing files
#so make sure a proper name is entered with a couple of chars
#(it should be enough to test for len==0, but what the heck)
if len(name) < 3:
raise Exception
self .name = name

15

def new_nitrogen_setup(self, r=1.1, rvbar=None, rcomp=None,
rfilter=None, hfilter=0.4):
"""Generate_ new nitrogen,setup.

uuuuuuuuTheunewusetupudependsuonufiveuparametersu(Bohruunits):

vuucuoon*u0.60<ury<yl1.9:ycutoff radius foryprojector ,functions
vuuuuouL*u0.6 < rvbar;<,1.9: cutoff radius zero, potential, (vbar)
Luuuunun*u0.6u<yrcompy<y1.9:ycutoff radius for ,compensation charges
Luuounuu*u0.6<yrfilter ;< ,1.9: ,cutoff radius_ for Fourier-filtered
LuuLuvusuuprojector functions
vuuuuoou*0u0.2,< hfilter ,<,0.6: target grid,spacing

uvuuvuvuuUsethe setupylike this::
vuuvuvucuucaley=pCalculator (setups={’N’: ’opt’},,...)
W

[EEY SR RTRNEYE}

if rvbar is None:

rvbar = r
if rcomp is None:

rcomp = r
if rfilter is None:

rfilter = 2 * r
g = Generator(’N’, ’PBE’, scalarrel=True, nofiles=True)
g.run(core=’[He]’,

rcut=r,

vbar=(’poly’, rvbar),
filter=(hfilter, rfilter / r),
rcutcomp=rcomp ,
logderiv=False)
path = os.environ[’GPAW_SETUP_PATH’].split(’:7)[0]
os.rename (’N.PBE’, path + ’/N.’+self.name+’.PBE?’)

def f(self, par):
self .new_nitrogen_setup (*par)

#new_nitrogen_setup(1.1, 1.1, 1.1, 1.9, 0.4)

#£([1.2])
#f([1.2, 1.0, 1.01)

A.3 simplex.py

#!/usr/bin/python

import atomization, setupgen
import sys, pickle, random

from LinearAlgebra import inverse
import Numeric as N

from datetime import datetime, timedelta

N_MAX = 100

ALPHA = 1.
BETA = .5
GAMMA = 2.
Default test_ function_ with one minimum_ at, (1,2,3,,...).

The minimum, is, exactly 42. Takespa_ list_ of coordinates as_an argument

and_ returns a_ number .
wun

def standardFunction(p):
y = 42
for i in range(len(p)):
y += (p[il-(i+1))*x2
return y

Performs the,’amoeba’-1like, downhill simplex methody in ndim ,dimensions.

16

29
30
31
32
33

34
35

pivaulist of, (ndim+1) ,vectors each, with ndim, ,coordinates,
corresponding to, the vertices of the, simplex.

y:uaplistof function_ values evaluated at the vertices,_ ordered_ consistently_ with_ the,
vertices_ ingp., y thus must_ have length,(ndim+1) as well

ndim:_ the, dimension, count of, the, space in, question. 0f course, this, variable isymostly,
for show,since it ’s not really necessaryinypython

fTolerance: fractional tolerance used to ,evaluate, convergence, criterion

function: the, ,functionyto,be minimized., The, function must, take exactly
ndim parameters ,_ each_ parameter_ being, one number

maxIterations: theymaximal number_ of iterations_ to be performed_ before
returning,,in,case, convergence is,slow

Returns the number of_ times_ the function has been evaluated during the
procedure .

After,invocation, the argument lists,pyand,y,will have, been; modified to,contain
the, simplex, vertices,and, associated, function,values,at, termination, of the
procedure .

def amoeba(p, y, ndim, fTolerance, function=standardFunction, out=sys.stdout, dump=’
lastdump .dump.pckl?’):

mpts = ndim + 1

evaluationCount = 0

#This is probably the coordinate sum, i.e.

#it probably has to do with the geometric center of the simplex
psum = getpsum(p)

while True:
print >> out, ’Points:’, p
print >> out, ’yValues:’, y
print >> out, ’EvalCount:’,evaluationCount
print >> out
out.flush()

#Write current points to file for recovery if something goes wrong
pickleDump ((p,y),dump)

ilow = 0 #index of lowest value
iHigh = None #index of highest value
i2ndHigh = None #index of second highest value
if y[0] > y[1]:
(iHigh, i2ndHigh) = (0, 1)
else:
(iHigh, i2ndHigh) = (1, 0)

#Loop through vertices to find index values for highest/lowest entries
for i in range(mpts):
if y[il < y[iLlow]:
ilow = i
if y[i] > y[iHigh]:
i2ndHigh = iHigh

iHigh = i
elif y[i] > y[i2ndHighl]:
if i != iHigh:

i2ndHigh = i

#Things should be floats already, but it’s good to be safe
relDeviation = float (abs(y[iHigh] - y[iLow]))/abs(y[iHighl+y[iLow])

print >> out,’Rel._ deviation’, relDeviation
out .flush()

if relDeviation < fTolerance:
break

if evaluationCount >= N_MAX:

17

print ’=== Max;evaluation count’,N_MAX,’exceeded, terminating! ===
#Some would call this an error, but we’ll just return

#as if nothing has happened

break

yTry = amotry(p, y, psum, ndim, function, iHigh, -ALPHA)
evaluationCount += 1

if yTry <= y[iLow]:
yTry = amotry(p, y, psum, ndim, function, iHigh, GAMMA)
evaluationCount += 1
elif yTry >= y[i2ndHighl:
ySave = y[iHighl
yTry = amotry(p, y, psum, ndim, function, iHigh, BETA)
evaluationCount += 1
if yTry >= ySave:
for i in range(mpts):
if i != iLow:
for j in range (ndim):
psum[j] = .5 * (p[il[j] + pliLow][j1)
p[il[j] = psum[j]
y[il = function(psum)
evaluationCount += ndim
psum = getpsum(p)

return evaluationCount

Extrapolatesythrough orypartway, to simplex face, possibly finding ,a better
vertex
o
def amotry(p, y, psum, ndim, function, iHigh, factor):
#Wonder what these ’factors’ do exactly
factorl = (1. - factor)/ndim
factor2 = factorl - factor

pTry = [psum[jl*factorl - p[iHigh]l[jlxfactor2 for j in range(ndim)]
yTry = function(pTry)

if yTry < y[iHighl:
y[iHigh]l = yTry
for j in range(ndim):
psum[j] += pTry[j] - pl[iHighl[j]
pliHighl[j]l = pTryl[j]

return yTry

Given,a, list of ,(ndim+1) ,vectors, each, with, ndim, coordinates,
returns the list of coordinate sums across vectors,
i.e.ytheyn’th element is, the, sum of the n’th coordinates of all vectors_ in_ p
won
def getpsum(p):
mpts = len(p)
ndim = mpts - 1

psum = array(ndim)
for i in range(ndim):
psum[i] = sum([q[i]l for q in pl)

return psum

Returns ajlistof vertex coordinates forming a regular_ simplexyaround_ the
designated center ,_ where, the, size_ argument is_ the max vertex-center_ distance.

This method,simply, generates, a random, simplex,_ and may, fail, toydo,soata

veryusmalluprobabilityu(ifurandomlyugenerateduvectorsuareulinearlyudependent)
won

def getInitialPoints(center=[0,0], size=1, seed=0):
ndim = len(center)

18

3

247

mpts =
r = ran

points
for i i

poi

return

ndim + 1
dom .Random (seed)

= array(mpts)

n range (ndim+1) :
nts[i] = [(r.random()-.5)*size+center[j] for j
points

in range(ndim)]

Runs the amoeba optimization_ function with, sensible values

def

smallte

st ():

f = standardFunction
p = getInitialPoints ([7,3,2,6,3])

print ’Initialypoints,gotten’

print ’Mapping,puthrough £’

y = map
print
ndim =
fTolera

amoeba (

print
#print
#print
print

(f, p)

Done_ mapping’
len(p) -1

nce = .000001

P, ¥y, ndim, fTolerance,

Done !’
P’, P
V.
plol?,plo0]

class SetupEvaluator:

def __i
set
sel

sel

nit__(self, setup):
up = ’opt.’+setup
f.setup = setup

f.generator = setupgen.SetupGenerator (setup)

£)

puuuRuns ya full testyof jaygiven ,GPAW, setup

[ETEYETE]

def badness (self, args):

ref
ref

Energy = -10.55
Dist = 1.102

try:

self .generator .f(args) #new setup
print ’Newysetup,created’

overallBadness = 0

startTime = datetime.now()

print ’Calculating atomization energy’
energyBadness = 1/.05%%2 #badness == 1 for deviation ==
(cl1,c2) = atomization.atomizationCalculators (out=DNone,

Ea = atomization.calcEnergy(cl,c2,a=6.0)

print ’Energy’,Ea
db = energyBadness

overallBadness +=

* (Ea - refEnergy) x*2
print ’Energy_ badness’,db

db

print ’Calculating_ bond length’
d = bondLength(self.setup)
1./.005%%2

distanceBadness =

db = distanceBadness * (d

overallBadness +=

print ’Bond;length’,d

db

refDist) *x*2

print ’Bond, length,badness’,db

setup=self

print ’Calculating,energy,fluctuation, amplitude’
DE = energyFluctuationTest (self.setup)
energyFluctuationBadness
db = energyFluctuationBadness * DEx*%2

overallBadness +=

db

1./.005%%2

19

.05 eV

.setup)

print ’Fluctuation,magnitude’,DE
print ’Fluctuation badness’,db

print ’Calculating, convergence rate’
hVar = convergenceTest (self.setup)
convergenceBadness = 1./.2%%2

db = convergenceBadness * hVar
overallBadness += db

print ’Energy_difference’,hVar

print ’Energy_difference badness’,db

print ’Calculating, temporal, badness’

timeBadness = 1./20%*2 #20 seconds --> badness == 1
dt = (datetime.now() - startTime).seconds
db = timeBadness * dt**2

overallBadness += db
print ’Time’,dt
print ’Timegbadness’,db

print ’0Overall,badness’,overallBadness

except KeyboardInterrupt:

raise KeyboardInterrupt #Don’t ignore keyboard interrupts

#except:
return 10000.

return overallBadness

Returns the bond length._ Calculates energy at, three locations around, the

reference bond, length, interpolates, with,a,2nd degree polynomial and returns
the minimum, 0f, ,this polynomial, which,would be, roughly, equal, to,the bond, length

without engaginginjajlarge whole relaxation test

W
def bondLength(setup):

print ’Distanceptest’
do = 1.102

dd = (.2 / 140.)*x.5 #around .04 A. Bond properties correspond to
#an energy of E = .5 k x**2 with k = 140 eV/A*%2

#If we want .1 eV deviation then the above dd should be used

calc = atomization.MakeCalculator (atomization.molN.nbands2,

out=None ,
D = [d0-dd, d0, d0+dd]
#Calculate energies at the three points

setup=setup)

E = [atomization.energyAtDistance(d, calc=calc, a=5.5) for d in D]

print ’Distances’,D

print ’Energies’,E

print

#Now find parabola and determine minimum

x = N.array (D)
y = N.array(E)

A = N.transpose(N.array ([x**0, x*xx1, x**2]))
¢ = N.dot(inverse(A), y)
print ’Coordinates’,c

X = - c[1] / (2.%c[2]) # "-b/(2a)"
print ’Bond;length’,X

#print c
#print N.dot(A, c) - y

return X

Returns whatever_ wasywrittenpby_ pickledump
won

def pickleLoad(fileName):
content = pickle.load(open(fileName))
return content

Writes,the,data, to, the file, deleting,any other, content

20

399 wun
323 def pickleDump (data,fileName):

324 pickle.dump (data, open(fileName, ’w’))
325

326 nun

327 Runsga,complete optimization.

328

329 All, files,pertaining, to,the, test will, have, file;names, containing
330 the_ testName parameter.

332 fTolerance is the termination tolerance of the
333 amoeba,function.

335 IfyinitDatayisyspecified it should_ be the file namegof

336 a_pickle, file, containing, a,set of points_ and, values,(p,y).that are

337 compatible, with,the amoeba, function as, specified in its, documentation.
338 nun

339 def seriousTest (testName=’test’, fTolerance = .002, ndims=2, initData=None):
340

341 fileName=testName+’.log?’

342

343 outFile = open(fileName, ’w’)

344 evaluator = SetupEvaluator (testName)

345

346 f = evaluator.badness

347 sensibledata = [1.1, 1.1, 1.1, 2.2, 0.4]

348 #Defaults for new_nitrogen_setup. Warning: hardcoded here,
349 #be sure to change this if new_nitrogen_setup is changed
350

351 if initData is None:

352 dumpFile = testName+’.dump.pckl?’

353

354 p = getlnitialPoints (sensibledata[:ndims], size=.1)
355 print >> outFile, ’Initial_ points, gotten’

356 print >> outFile, ’Points’,p

357 print >> outFile, ’Mapping.puthrough, £’

358 outFile.flush ()

359 y = map(f, p)

360 print >> outFile, ’Done mapping,_ dumping, to, file’
361 print >> outFile, ’y_values:’,y

362 pickleDump ((p,y), dumpFile)

363 else:

364 (p,y) = pickleLoad(dumpFile)

365 print >> outFile, ’Initial, values,loaded from’,dumpFile
366 print >> outFile, ’p:y’,p

367 print >> outFile, ’y:y’,y

368

369 outFile.flush ()

370

371 ndim = len(p)-1

372

373 print >> outFile, ’Amoeba,commencing’

374 print >> outFile, 7----------------- ’

375 outFile.flush ()

376

377 amoeba(p,y,ndim,fTolerance, f, out=outFile, dump=dumpFile)
378

379 nnn

380 Plots_ the_ energy of, a N2 moleculeas a, function of different resolutions
381 (h-values) and, returns,the, maximal difference

382 nnn

383 def convergenceTest(setup):

384 A = atomization

385 h = [.156, .17, .20]

386 calc = [A.MakeCalculator (A.molN.nbands2, out=None, h=h0,
387 setup=setup) for hO in h]

388 E = [A.energyAtDistance (A.molN.d, calc=c, a=4.) for c in calc]
389

390 print ’h’,h

391 print ’E’,E

392

393 return max(E) - min(E)

394

395 n"nn

21

Returns the difference between the energy, of ,aynitrogen molecule at, the center
of ,the unit,cell and,the energy, of_ one, translated by h/2,along the,z axis.

def energyFluctuationTest (setup):

A = atomization
h = .2

calc = A.MakeCalculator (A.molN.nbands2, out=None, setup=setup, h=h)

d = A.molN.d
E1l = A.energyAtDistance(d,
E2 = A.energyAtDistance(d,

return E2-E1

)
, dislocation=(0.,0.,h/2.))

calc=calc,

a=4.
calc=calc, a=4.

’[Nonel*length’,looks slightly_ silly so,let’s initialise our lists with a
nicelyynamed_ functiong instead

def

array (length):
return [None]*length

22

