
Parameter Optimisation for Grid-basedProje
tor Augmented Wave Method usingDownhill Simplex Algorithm10302 � Ele
troni
 Stru
ture Methods in Material Physi
s, Chemistry and Biology

0 10 20 30 40

140

160

180

200

220

Author:Ask Hjorth Larsen, s021864May 11, 2007Te
hni
al University of DenmarkLyngby

Abstra
tThe Grid-based Proje
tor Augmented Wave method relies on a number of parametersspe
ifying properties su
h as
uto� radii between inner and outer atomi
 regions. Exhaus-tive sear
hing for optimal parameter
hoi
es are unfeasible due to
al
ulation
omplexity.This text do
uments the implementation of the downhill simplex method, an optimisationalgorithm whi
h is
apable of traversing a sear
h spa
e of su
h parameters and generatingnew
ombinations that
onform better to a set of
onditions su
h as adheren
e of
al-
ulated energies to referen
e values and similar properties. The algorithm is su

essfullytested with nitrogen setups, and generated setups produ
e results whi
h seem to be betterthan default values. Further tweaking and testing
an probably improve the algorithm
onsiderably.

ContentsAbstra
t iContents ii1 Introdu
tion 11.1 Density fun
tional theory . 11.2 Grid-based Proje
tor Augmented Wave method 22 The Grand Plan 22.1 Main properties of the algorithm . 22.2 Test fun
tion prin
iples . 23 Designing a setup evaluation fun
tion 33.1 Cell
on�gurations and energy
al
ulations 33.2 Preliminary
al
ulations . 43.3 Test fun
tions . 53.4 Setup generation . 54 Optimisation pro
edure 74.1 The downhill simplex algorithm . 74.2 Running the algorithm . 84.3 Results and analysis . 85 Con
lusion 9Referen
es 12A Appendix 13A.1 atomization.py . 13A.2 setupgen.py . 15A.3 simplex.py . 16

ii

1 Introdu
tionGPAW[1℄, for Grid-based Proje
tor-Augmented Wave method, is a Python software li-brary implementing the proje
tor-augmented wave method in a real-spa
e grid, whi
h isused for numeri
al
al
ulations in density fun
tional theory. GPAW
al
ulations involv-ing an element, say nitrogen, use an element-spe
i�
 setup whi
h de�nes suitable DFTparameters su
h as pseudo-wave fun
tion
uto� radius.The purpose of this proje
t is to �nd better GPAW setups using an optimisationpro
edure whi
h
an generate and evaluate setups. The input values are various setupgeneration parameters, and the output is a new set of su
h parameters generating a setupwhi
h (hopefully) yields better results than the original.We are in this
ase
on
erned only with the
ase of nitrogen and shall use only thePBE approximations for ex
hange-
orrelation energies.The following se
tions will provide a short summary of density fun
tional theory and theproje
tor augmented wave method. Further, se
tion 2 provides a
omplete � and morete
hni
al � overview of the obje
tives and methods to be used. Se
tion 3 do
umentse�
ien
y and pre
ision
onsiderations plus the design of the fun
tions used to evaluatesetups. Finally Se
tion 4 deals with the optimisation algoritm itself and the results.It turns out that the algorithm su

essfully generates setups whi
h do appear to yieldbetter results. More testing and general assessment still needs to be done, perhaps mostlyparameter tweaing. Longer optimisation runs might provide more information.I am highly grateful for Jens Jørgen Mortensens mu
h-needed help in using GPAW.Thanks also to Jan Rossmeisl for general information about density fun
tional theory.1.1 Density fun
tional theoryIn 1964 it was shown by Hohenberg and Kohn[5℄ that the ele
tron density n(r), a quantityof mu
h greater simpli
ity than the entire ele
troni
 wave fun
tion, is su�
ient to deriveall observable quantities with regards to the ele
troni
 behaviour of a quantum me
hani
alsystem.Spe
i�
ally, two theorems were proven for the ground states and energies of many-parti
le ele
troni
 systems:� The energy of a system is a fun
tional E[n] of the ele
troni
 density n(r). Thisimplies e.g. that two wave fun
tions
orresponding to di�erent energies
annot
or-respond to the same density. Furthermore the ele
tron density uniquely determinesthe wave fun
tion.� The energy fun
tional has a minimum E[n0] at the ele
troni
 ground state n0.The ele
tron-ele
tron intera
tions turn out to be highly expensive to in
lude in
al-
ulations. The Kohn-Sham equations provide one solution to this problem. Using these itis possible to
onvert the N -parti
le problem into N one-parti
le problems, wherein thee�e
t of the multitude of ele
trons � barring the one under
onsideration � is repla
edby an e�e
tive potential Ve�. There does exist a
hoi
e of potential whi
h emulates thepresen
e of other ele
trons exa
tly, but unfortunately the derivation of this potential isex
eedingly di�
ult ex
ept for very simple systems su
h as the free ele
tron gas. Formore
omplex systems variational methods are usually applied to determine the e�e
tivepotential.A host of di�erent methods have been used to implement density fun
tional theory,some of whi
h use proje
tor-augmented waves.1

1.2 Grid-based Proje
tor Augmented Wave methodGPAW is an implementation of the proje
tor augmented wave method[2℄ using a real-spa
e grid rather than, say, its fourier transform, a k-spa
e grid. The all-ele
tron systemis subje
ted to a transform whi
h allows the inner regions to be treated with spheri
alsymmetry, whereas the outer region, with the valen
e ele
trons, are treated di�erently.�Proje
tor fun
tions� are used to join (or augment) the two solutions at some radius fromatom
ores. In the outer region, the presen
e of the inner ele
trons is emulated by asmooth pseudo-wave fun
tion. Suitable variables that
an be optimised, su
h as in thisreport, in
lude the
uto� radii for the pseudo-wave fun
tions.2 The Grand PlanThe stated obje
tive is to derive a method whereby it is possible to determine the in somesense �optimal� parameters used to generate setups for GPAW.GPAW setups are sets of information pertaining to spe
i�
 atoms. There is one setupfor nitrogen using the PBE ex
hange-
orrelation fun
tional, and this is the setup we areinterested in optimising. One su
h parameter to be varied is the
uto� radius from atom
ores within whi
h pseudo-wave fun
tions are used, but generally the setup generationfun
tion serves as a bla
k box, the details of whi
h are not
riti
al.2.1 Main properties of the algorithmThe algoritm to be used is the downhill simplex method, whi
h will be explained in detail inSe
tion 4.1. The method �nds a (lo
al) minimum of a fun
tion f : R
n 7→ R by evaluatingfun
tion values only (not, say, derivatives).The fun
tion to be minimized
an therefore depend on any number of GPAW setupparameters, and it must return something indi
ative of the setup quality (hen
eforthreferred to as the badness sin
e it is to be minimized).2.2 Test fun
tion prin
iplesEvaluation of a setup involves �ve measures pertaining to pre
ision, robustness and e�-
ien
y, ea
h of whi
h
an be
al
ulated independently:� The deviation of atomisation energy from referen
e value� The deviation of bond length from referen
e value� The sensitivity to sub-resolution
oordinate translations� The rate of solution
onvergen
e with resolution� Cal
ulation timeThe badness fun
tion is de�ned as a weighted square sum of these. A GPAW setup whi
hs
ores well on all �ve tests is likely to be a good overall setup � if subsequent tests showthe
ontrary, the tests
an be adjusted or expanded, and the weights
an be
hanged. Thepre
ise spe
i�
ations for these test fun
tions will be de
ided in Se
tion 3.3In
on
lusion: An optimisation pro
ess involves generating an initial setup with sen-sible parameters (Se
tion 3.4), then using the simplex algorithm (Se
tion 4.1) to adjustthe parameters by means of repeated evaluations of the badness fun
tion (Se
tion 3.3).2

Atomi
 data for nitrogen
Ea (PBE) 10.55 eV

Ea (GPAW) 10.62 eVBond length 1.103 ÅMagneti
 moment (N) 3Magneti
 moment (N2) 0Band
ount (N) 4Band
ount (N2) 5Table 1: Atomi
 data for nitrogen. The PBE energy value is taken from[2℄, and the GPAW value from [3℄.In the next se
tion GPAW
al
ulations will be used to design these �ve test fun
tions,taking into a

ount the ne
essary resolutions,
ell sizes and other fa
tors.3 Designing a setup evaluation fun
tionThe purpose of this se
tion is to determine the
ell sizes and resolutions whi
h must beused in order to obtain sensible results. The relevant atomi
 data for nitrogen used inthe
al
ulations are shown in Table 1. Re
all that we will use the PBE fun
tional forex
hange and
orrelation. For this reason the
al
ulated PAW energies are
ompared tothose derived by all-ele
tron PBE methods, whi
h means a referen
e atomisation energy1of 10.55 eV rather than the experimental value of 9.91 eV.3.1 Cell
on�gurations and energy
al
ulationsTwo di�erent
al
ulations are going to be relevant:� The ground state energy E[N2](d) of a system
onsisting of two nitrogen atomsat some separation d (not ne
essarily the bond length). The atoms are put on the
x-axis with the desired separation, i.e. at a/2±(d/2, 0, 0) for a
ell of size a×a×a).� The atomization energy Ea = E[N2](d0) − 2E[N], i.e. the di�eren
e between theenergy of a nitrogen mole
ule and twi
e that of an isolated nitrogen atom. Themole
ular energy is obtained by spa
ing the atoms like in the previous
ase butwith �xed separation equal to the bond length d0. The
al
ulations on isolatedatoms are performed with the atom lo
ated at the
enter of the otherwise identi
alunit
ell.These fun
tions
an be run with any
ell size a and any grid spa
ing h. The duration ofa
al
ulation is highly dependent on these fa
tors sin
e they determine the total num-ber of grid points. Other variables are generally left at the GPAW
al
ulator defaults� ex
eptions to this will be spe
i�ed when appropriate. The Python fun
tions imple-menting these
al
ulations are available in Appendix A.1, and the relevant fun
tions areenergyAtDistan
e and
al
Energy, respe
tively.The setup in the
ase of two atoms
an be seen on Figure 1. Next, a number of
al
ulations will be made to test these fun
tions.1See [2℄, or [6℄ 3

x

z

Figure 1: Con�guration with two nitrogen atoms. The y axis is
ol-lapsed. The dashed lines indi
ate the unit
ell, and the dotted lines the
entre, symmetri
ally about whi
h the two atoms are arranged.3.2 Preliminary
al
ulationsAs an overall saneness-test, Figure 2a shows the ground-state energy of a two-mole
ulesystem as a fun
tion of the interatomi
 distan
e, i.e. an evaluation of E[N2](d) for d =
0.6 . . . 2 Å using 64 points with
ell size a = 6 Å and resolution h = 0.2 Å (The GPAW
al
ulator parameter lmax2 is set to 0 instead of the default value 2 during this
al
ulationbe
ause of errors o

uring at smaller distan
es.).Furthermore a very pre
ise evaluation of Ea using a �ne grid h = 0.15, a large
ell
a = 10 and lmax=2 yields a result of 10.60 eV whi
h is very
lose to the GPAW valuefrom Table 1. Thus the written fun
tions produ
e sensible results.Next we shall test the impa
t of
ell size on pre
ision. Figure 2b shows a plot of theatomization energy as a fun
tion of
ell sizes 0.4 to 9.5 Å for h = 0.2 Å (this plot usesnon-default lmax=0 sin
e the
al
ulations
rash for small
ell sizes otherwise). A
ell sizeof 6Å should be reasonable for most
al
ulations.Figure 2
 shows the ground state energy of two nitrogen atoms as a fun
tion of thegrid resolution h. This plot also uses lmax=0. This
al
ulation is done to investigate
onvergen
e rather than an a
tual value, so the
ell size is set to 4 Å in order to speedup
al
ulation. Most
al
ulations will use h = 0.2 Å sin
e smaller values take too mu
htime, even though smaller values still in
rease pre
ision.If the system is translated a small distan
e less than the resolution h, numeri
ale�e
ts regarding the grid resolution will likely
ause small undesirable deviations in the
al
ulated energies. In order to examine this e�e
t,
onsider Figure 2d. The �gure showsthe
al
ulated energy of a nitrogen mole
ule aligned along the x-axis as a fun
tion of itsdislo
ation along the z-axis from 0 to h from the
enter of the unit
ell. The plot is madewith the (small)
ell size a = 4.0 Å (the
ell size must be largely irrelevant for this e�e
t)and resolution h = 0.2 Å. The system is periodi
 su
h that the part of the system whi
hslides out one side of the unit
ell due to the dislo
ation does not have impa
t on theresult. This should mean that the deviation is periodi
, whi
h is indeed the
ase. Clearly2lmax is the �maximum angular momentum for expansion of
ompensation
harges�[4℄ and defaultsto 2. For �di�
ult� geometries this
hoi
e sometimes
rashes the
al
ulations with an error about
harge
onservation violation. 4

the maximum energy �u
tuation
orresponds to dislo
ations of 0 and h/2, meaning thatthe magnitude of this e�e
t
an be determined simply by taking the di�eren
e betweenthe energies at dislo
ations 0 and h/2:
δE = Ez=0 − Ez=h/2. (3.1)3.3 Test fun
tionsFive di�erent tests are used to evaluate a GPAW setup, see Table 2.1. The Energy test
al
ulates Ea like above for a = 6 Å and
ompares it to the referen
evalue.2. The Distan
e test
al
ulates the bond length deviation from the referen
e value. Thisis done by evaluating E[N2] at three points
lose to the referen
e value, �tting witha parabola and �nding the minimum. Presently a spatial deviation 0.038 Å is used,giving an energy deviation of around 0.1 eV. Thus the three points of evaluation areset to d0 and d0 ± 0.038 Å. This test uses the parameter lmax=2 sin
e this improvespre
ision.3. The Flu
tuation test �nds the sub-grid-resolution energy �u
tuation amplitude byevaluating E[N2] at the
enter c of the unit
ell, and then again at c + (0, 0, h/2)like in Equation (3.1). It might be better to do a test along the other axes as well,but this presently has not been implemented be
ause it in
reases
al
ulation time.4. The Convergen
e test evaluates E[N2] for the three di�erent h values 0.2, 0.17 and

0.15 angstroms. If the energy di�eren
e is small, the energy estimate at h = 0.2Å was good, meaning that the solution
onverges properly. The test returns thedi�eren
e between the largest and the smallest energy value.5. Finally the Time test is supposed to evaluate the CPU time ne
essary to solve aproblem. This has not been implemented, so presently the wall-
lo
k time T of theother tests is used instead, whi
h is
rude, but works. If this test is not performedthen the algorithm might return a very pre
ise but pra
ti
ally unusable setup.The �ve tests are
ombined into a single measure of the setup badness by taking a weightedsquare sum of all the test results (subtra
ting referen
e values where appli
able). Theweights are sele
ted su
h that a badness of 1
orresponds to a parti
ular test result, andthese de�nitions
an be seen in Table 2. If a test fails, i.e. an ex
eption is thrown during
al
ulations, a badness of 10000 is returned as �penalty�. The sour
e
ode
an be foundin Appendix A.3, and the relevant fun
tion is
alled badness.3.4 Setup generationFor referen
e, the parameters supplied to the setup generator along with default �sensible�values are listed in table 3. Optimisation run may optionally be run without all of thesevariables due to time
onstraints � the remaining parameters are made dependent on theprevious ones (see Appendix A.2 for sour
e) to redu
e the dimension of the sear
h spa
eand thus
al
ulation time.The next se
tion
on
erns the implementation of the a
tual algorithm.5

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-20

-10

0

10

20

30

40

50

60

(a) The energy of a system
onsistingof two nitrogen atoms as a fun
tion ofseparation. The known bond length 1.103Å
orresponds well to the lo
ation of theminimum. 4 5 6 7 8 9 10
-10.5

-10.0

-9.5

-9.0

-8.5

(b) Energy as a fun
tion of
ell size. 6 Åor higher is required for reasonable pre
i-sion
0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

-16.5

-16.0

-15.5

-15.0

-14.5

-14.0

-13.5

-13.0

(
) The ground state energy as a fun
-tion of grid resolution h. The plateaus ap-pear be
ause some adja
ent h-values
or-respond to the same number of a
tual gridpoints. 0.00 0.05 0.10 0.15 0.20 0.25
-0.024

-0.022

-0.020

-0.018

-0.016

-0.014

-0.012

-0.010

-0.008
-1.837e1

(d) The energy as a fun
tion of trans-lation along the z-axis of a nitrogenmole
ule aligned along the x-axis. Theamplitude is around 13.9 meV, and thedeviation is
learly maximal between dis-lo
ations of 0 and h/2.Figure 2: Various tests used to de
ide suitable
ell and GPAW
al
u-lator properties. Test overviewName a Unit badnessEnergy test 6.0 0.05 eVDistan
e test 5.5 0.005 ÅFlu
tuation 4.0 5 meVConvergen
e 4.0 0.2 eVTime - 20 sTable 2: The �ve tests, the used
ell sizes and the test result wi
his de�ned to have a badness value of 1. All tests use h = 0.2 whereappli
able, ex
ept the
onvergen
e test whi
h varies h.6

Default setup parametersName Default Des
riptionr 1.1 Cuto� radius for proje
tor fun
tionsrvbar r Cuto� radius zero potentialr
omp r Cuto� radius for
ompensation
hargesrfilter 2 r Cuto� for fourier-�ltered proje
tor fun
tionhfilter 0.4 Target grid spa
ingTable 3: The parameter identi�ers and default values supplied to thesetup generator. These values are the ones adjusted when the algorithmruns. All values are in Bohr units.4 Optimisation pro
edureBy now we have de�ned a set of parameters to optimise, along with fun
tion to optimise.Only the algorithm remains.4.1 The downhill simplex algorithmAn n-dimensional simplex is the
onvex hull bounded by n + 1 (a�nely independent)points plus their inter
onne
ting lines and fa
es. For example a two-dimensional simplexis a triangle, and a three dimensional one is a tetrahedron.The downhill simplex method [7, pp. 305�309℄ is an algorithm whi
h
an be used tominimise a fun
tion f : R
n 7→ R by evaluating the fun
tion on the n + 1 verti
es of asimplex in R

n, then repeatedly moving the least-favourable points of the simplex (i.e. those
orresponding to high fun
tion values) in the general dire
tion of the more favourablepoints, possibly past them, and reevaluating f at the new lo
ation. The simplex willthus be made to move a
ross the parameter spa
e R
n until hopefully a minimum of f isobtained.A detailed des
ription of the algorithm follows.Initialize a simplex with �reasonable� parameter values as the n+1 verti
es p1 . . . pn, andevaluate f there. Then repeat the following steps:� Find the vertex indi
es ihigh, i2nd high and ilow with highest, se
ond-highest andlowest fun
tion values.� Cal
ulate the relative di�eren
e |ymax−ymin

ymax+ymin | between maximum and minimum fun
-tion values. If this number is smaller than some toleran
e, there is no appre
iablevariation in the fun
tion here meaning that the verti
es have
onverged on a mini-mum, and the algorithm terminates. Otherwise
ontinue.� Re�e
t the point pimax with highest fun
tion value through the opposite simplexfa
e and evaluate f here.� If this yields a lower fun
tion value than the hitherto lowest, extrapolate some extradistan
e (say, twi
e the distan
e) in the same dire
tion and evaluate f there.� Else: 7

� If the re�e
ted point is worse than the se
ond-highest existing point, the min-imum probably lies between the existing points; thus move the point ba
k toa lo
ation halfway between the original position pimax and the opposite fa
e,and evaluate f .� If this new point still has the highest fun
tion value aomg the verti
es, theminimum must be near the
urrently best point. Contra
t all other pointshalfway towards the best point and evaluate f at these all lo
ations.The sour
e
ode
an be found in Appendix A.3. The algoritm is split into two fun
tions,namely amoeba and the helper fun
tion amotry.4.2 Running the algorithmThe algorithm
an be run with any number of parameters. A start simplex of appropriatedimension is generated pseudorandomly. Re
all that most of the default parameter valuesare around 1.1, so the initial points are distributed within 0.1 of the default values. Thealgorithm writes parameters, badness values and toleran
e evaluations to a log �le. It alsosaves the parameters and badness values of the last iteration in a dump �le whi
h
an beused as initial
onditions for another test run.Test runs presently take very long time. Only one test run has been made where all�ve parameters are varied. For reasons of stability, all
al
ulations use lmax=04.3 Results and analysisThe result of di�erent test runs
an be seen in Table 4. Consider the test run where all�ve parameters are varied. A subsequent
al
ulation using a = 7 Å yields an atomisationenergy of Ea = 10.50 eV,
onsiderably
loser to the referen
e value of 10.55 eV than theresult 10.39 eV of the similar
al
ulation using the default setup. However this is notexa
tly surprising sin
e the optimisation algorithm is designed to optimise exa
tly thiskind of problem. More general tests will have to be performed in order to better evaluatethe quality of the optimised setup, but time
onstraints prevent large-s
ale testing.Figure 3 shows during the 5-parameter run the evolution of the variable whi
h is
ompared to toleran
e during ea
h iteration, i.e. the variable whi
h ends the algorithmwhen it gets small enough. Large values of this variable tends to indi
ate that the verti
esare moving large distan
es (or that the fun
tion to be optimised is os
illating weirdly).It
an be seen that while the value falls o� and rises again repeatedly. The explanationfor this is most likely that the simplex
ontra
ts and expands �like an amoeba� whentraversing through shallow paths in the parameter spa
e. However it also means that itmight take
onsiderably more iterations than indi
ated, sin
e the value might rise againhad a lower termination value been used. Note also that while there are 37 values on thegraph, the algorithm uses trial-and-error to de
ide whether to expand or
ontra
t � thismeans that frequently more than one fun
tion evaluation is done per step. In this
asethere were 79 fun
tion evaluations in total.Figure 4 shows the badness progression for ea
h vertex during the 5-variable run.The values peak sharply at several points. This
an only happen when the simplex is
ontra
ted, whi
h indi
ates that the algorithm thinks it has found a minimum. Evidentlythis is not quite the
ase. A likely explanation is that the badness fun
tion is not verysmooth (whi
h would make the optimisation pro
eed similarly smoothly), but full of 5-dimensional saddle points whi
h slow the algorithm. It is un
lear how long the algorithm8

Initial and optimised setup parametersName Default Optimisedr 1.1 1.021rvbar 1.1 1.081r
omp 1.1 1.148rfilter 2.2 2.288hfilter 0.4 0.4525Table 4: The initial parameters and those obtained by running the op-timisation algorithm.

0 5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

Figure 3: Progression of the value of the termination parameter duringan optimisation run.
an run before �nding an a
tual minimum. Nonetheless the derived parameters do yield
onsiderably di�erent results as shown above.Figure 5 shows the
onvergen
e of the parameter r as the algorithm progresses. Thisplot is made during a two-parameter optimisation, so there are three simplex verti
es
orresponding to three
urves. In this
ase the values seem to
onverge quite well ina limited amount of evaluations. The same will probably happen in more dimensionsalthough, as we have seen, the pro
edure takes more iterations to settle when more pointshave to be moved.5 Con
lusionThe proposed algorithm has been written and is
apable of generating GPAW nitrogensetups whi
h seem to yield values better than those of the default setup. The algorithmhas su

essfully been tested in a 5-dimensional parameter spa
e. The algorithm relies on�ve di�erent tests to assess the quality of a given setup.The parameter spa
e is somewhat di�
ult and time
onsuming to traverse, and the9

0 10 20 30 40

140

160

180

200

220

Figure 4: The badness values at ea
h vertex during the 5-dimensionaloptimisation run. The values peak sharply at several points. This
anonly happen when the simplex is
ontra
ted, meaning that signi�
antdeviations are observed even with small parameter
hanges.

0 2 4 6 8 10 12 14 16 18
0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Figure 5: The
onvergen
e of the �rst
oordinate of ea
h of the threeverti
es during a lengthy two-variable optimisation run.10

algorithm frequently speeds up after looking as if it were about to
onverge. For thisreason it is di�
ult to tell a
tual minima from what turns out to be saddle points. Thisis in part a feature of the algorithm, and may not be a large problem. A very long testrun
ould be made to
he
k the algorithm behaviour more properly.It is possible that the present form of the badness fun
tion, i.e. as a sum of squares,is not optimal. If one parameter outweighs other parameters
onsiderably, some testswill have little impa
t on the overall badness. This is partly remedied by sele
ting properweights, but there is no parti
ular reason why a paraboli
 expressions should be inherentlybetter than, say, fourth order ones. More theoreti
al
onsideration might be given to thebadness fun
tion.

11

Referen
es[1℄ GPAW home page: https://wiki.fysik.dtu.dk/gpaw[2℄ J. J. Mortensen, L.B. Hansen and K. W. Ja
obsen: Real-spa
e grid implementationof the proje
tor augmented wave method, Phys. Rev. B 71, 035109. 2005.[3℄ GPAW mole
ule tests at experimental geometries, as of May 11, 2007.https://wiki.fysik.dtu.dk/gpaw/Mole
ule_Tests[4℄ The GPAW manual as of May 11, 2007.https://wiki.fysik.dtu.dk/gpaw/Manual[5℄ P. Hohenberg and W. Kohn, 1964, Phys. Rev. 136, B864.[6℄ S. Kurth, J. P. Perdew and P. Blaha: Mole
ular and Solid State Tests of DensityFun
tional Approximations: LSD, GGAs, and Meta-GGAs. Int. J. Quant. Chem. 75,889-898. 1999.[7℄ W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.Vetterling: Numeri
al Re
ipes in C:The Art of S
ienti�
 Computing, Cambridge University Press. 1988.

12

A AppendixA.1 atomization.py1 #!/ usr/bin/python23 import pylab45 from ASE import Atom , ListOfAtoms6 from gpaw import Cal
ulator78 """9 Utility
lass wrapping mole
ule informations10 nbands1 and 2 are the numbers of bands to be used with single -atom and11 mole
ular
al
ulations , respe
tively12 """13
lass Mole
uleInfo :14 def __init__ (self , letter , d, magmom , nbands1 , nbands2):15 self.d = d16 self.letter = letter17 self.magmom = magmom18 self.nbands1 = nbands119 self.nbands2 = nbands22021 #Also test H2 (4.5 eV). magmom =1, nbands =1 in Cal
ulator for H as well as H22223 molN = Mole
uleInfo ('N', 1.103 , 3, 4, 5)24 molH = Mole
uleInfo ('H', 0.740 , 1, 1, 1)2526 """27 Creates an atom. If a separation greater than 0 is spe
ified ,
reates28 two atoms
orrespondingly spa
ed along the x axis.2930 Returns a ListOfAtoms
ontaining whatever was
reated in this way31 """32 def getListOfAtoms (mole
ule =molN , separation =0, a=5., dislo
ation =(0. ,0. ,0.) , periodi
=False):33 atoms = None34 (dx , dy , dz) = dislo
ation35 (
x ,
y ,
z) = (a/2. + dx , a/2. + dy , a/2. + dz)36 d = separation /2.37 if separation ==0:38 #One atom only39 atoms = ListOfAtoms ([Atom(mole
ule .letter , (
x ,
y ,
z),40 magmom =mole
ule .magmom)℄,41 periodi
 =periodi
 ,42
ell =(a,a,a))43 else:44 #Create two atoms separated along x axis45 #No magneti
 moment then!46 atoms = ListOfAtoms ([Atom(mole
ule .letter , (
x+d,
y ,
z)),47 Atom(mole
ule .letter , (
x -d,
y ,
z))℄,48 periodi
 =periodi
 ,49
ell =(a,a,a))50 return atoms5152 """53 Cal
ulates the atomization energy , i.e. E[N2℄ - 2*E[N℄ where N2 and N denote54 nitrogen mole
ule and atoms , respe
tively55 """56 def
al
Energy (
al
1 =None ,
al
2 =None , a=4., mole
ule =molN , dislo
ation =(0,0,0) ,periodi
 =False , setup ='paw '):5758 oneAtom = getListOfAtoms (mole
ule , a=a, dislo
ation =dislo
ation ,59 periodi
 =periodi
)6061 if
al
1 == None:62
al
1 = MakeCal
ulator (nbands =mole
ule .nbands1 , setup =setup)63 if
al
2 == None:64
al
2 = MakeCal
ulator (nbands =mole
ule .nbands2 , setup =setup)6566 #bands : 2s and 2p yield a total of 4 bands ; 1s is ignored13

67 #setups ='A1' => will sear
h for /home/ask/progs /gpaw/setups /N.A1.PBE.gz68 oneAtom .SetCal
ulator (
al
1)69 e1 = oneAtom . GetPotentialEnergy ()707172 #gpts =(n,n,n) - to be varied in multiples of 473 d = mole
ule .d7475 twoAtoms = getListOfAtoms (mole
ule , a=a, dislo
ation =dislo
ation ,76 periodi
 =periodi
 , separation =mole
ule .d)7778 #10 ele
trons in total from 2s and 2p.79 #Thus it is ne
essary only to in
lude 5 bands80 twoAtoms .SetCal
ulator (
al
2)81 e2 = twoAtoms . GetPotentialEnergy ()8283 return e2 -2* e18485 """86 Using a parti
ular resolution h, test whether energies deviate
onsiderably87 if the system is translated in intervals smaller than h.88 """89 def displa
ementTest (a=5., mole
ule =molN , h=.2):90 print 'Displa
ement test:', mole
ule9192 h += 0. #floating point9394 test
ount = 395 dislo
ations = [℄9697 #Initialise test
oordinates98 for value in range (test
ount):99
oordinate = h * value /test
ount #linear distribution100 dislo
ations .append ((
oordinate , 0., 0.))101102 print dislo
ations103104 energies = [℄105 for dislo
ation in dislo
ations :106 #e =
al
Energy (a, mole
ule , dislo
ation , h)107 e = energyAtDistan
e (mole
ule .d, dislo
ation , h)108 energies .append (e)109110 print 'Energies :'111 print energies112113 print 'Max ',max(energies)114 print 'Min ',min(energies)115 print 'Diff ',max(energies) - min(energies)116117 """118 Creates two
al
ulators for the given mole
ule with appropriate band
ounts119 """120 def atomizationCal
ulators (mole
ule =molN , out='-', h=.2, lmax =0, setup ='paw '):121
al
1 = MakeCal
ulator (mole
ule .nbands1 , out , h, lmax , setup =setup)122
al
2 = MakeCal
ulator (mole
ule .nbands2 , out , h, lmax , setup =setup)123 return (
al
1 ,
al
2)124125126 """127 Default
al
ulator setup , however
ompli
ated it might be
ome someday128 This method allows you to forget about lmax and PBE and su
h129 """130 def MakeCal
ulator (nbands , out='-', h=.2, lmax =0, setup ='paw '):131 return Cal
ulator (nbands =nbands , out=out , h=h, lmax=lmax , x
='PBE ',setups =setup)132133 """134 Cal
ulates the ground -state energy of the given mole
ule when the atoms135 are spa
ed by the given distan
e136 """137 def energyAtDistan
e (distan
e ,
al
=None , dislo
ation =(0,0,0) ,138 mole
ule =molN , a=5., periodi
 =False):139
 = a/2.140 (dx , dy , dz) = dislo
ation 14

141142
oord1 = (
-distan
e /2. + dx ,
 + dy ,
 + dz)143
oord2 = (
+distan
e /2. + dx ,
 + dy ,
 + dz)144145 twoAtoms = getListOfAtoms (mole
ule , distan
e , a, dislo
ation ,146 periodi
)147148 if
al
 == None:149
al
 = MakeCal
ulator (nbands =mole
ule .nbands2)150151 twoAtoms .SetCal
ulator (
al
)152153 energy = twoAtoms . GetPotentialEnergy ()154 return energy155156 """157 Write lists x and y to spe
ified file158 """159 def writeResults (x, y, fileName , header =[℄):160 if len(x) != len(y):161 raise Ex
eption ('Result list length mismat
h ')162 length = len(x)163 f = open(fileName , 'w')164 lines = [''.join ([str(x[i℄),'\t',str(y[i℄),'\n'℄) for i in range (length)℄165166 for line in header :167 line = '# '+line168169 f.writelines (header)170171 f.writelines (lines)172 f.
lose ()173174 """175 Read list of (x,y) entries from datafiles , return as two lists176 """177 def readResults (fileName):178 f = open(fileName , 'r')179 lines = filter (stringFilter , f.readlines ())180 length = len(lines)181 pairs = [s.split () for s in lines ℄182 x = [float (pair [0℄) for pair in pairs ℄183 y = [float (pair [1℄) for pair in pairs ℄184 return (x,y)185186 """187 Allow
omments and empty lines in data files188 """189 def stringFilter (s):190 return not (s.startswith ('#') or s.isspa
e ())191192 """193 The gbar doesn 't have pylab so use this fun
tion194 """195 def linspa
e (start , end ,
ount):196 return [start + float (i)/(
ount -1) *(end -start) for i in range (
ount)℄A.2 setupgen.py1 import os2 from gpaw.atom.generator import Generator34
lass SetupGenerator :56 def __init__ (self , name):7 #We don 't want anything to mess up with existing files8 #so make sure a proper name is entered with a
ouple of
hars9 #(it should be enough to test for len ==0, but what the he
k)10 if len(name) < 3:11 raise Ex
eption12 self.name = name1314 15

15 def new_nitrogen_setup (self , r=1.1, rvbar =None , r
omp =None ,16 rfilter =None , hfilter =0.4) :17 """Generate new nitrogen setup .1819 The new setup depends on five parameters (Bohr units):2021 * 0.6 < r < 1.9:
utoff radius for proje
tor fun
tions22 * 0.6 < rvbar < 1.9:
utoff radius zero potential (vbar)23 * 0.6 < r
omp < 1.9:
utoff radius for
ompensation
harges24 * 0.6 < rfilter < 1.9:
utoff radius for Fourier -filtered25 proje
tor fun
tions26 * 0.2 < hfilter < 0.6: target grid spa
ing2728 Use the setup like this ::2930
al
 = Cal
ulator (setups ={'N ': 'opt '}, ...)3132 """3334 if rvbar is None:35 rvbar = r36 if r
omp is None:37 r
omp = r38 if rfilter is None:39 rfilter = 2 * r4041 g = Generator ('N', 'PBE ', s
alarrel =True , nofiles =True)42 g.run(
ore='[He℄',43 r
ut=r,44 vbar =('poly ', rvbar),45 filter =(hfilter , rfilter / r),46 r
ut
omp =r
omp ,47 logderiv =False)48 path = os.environ ['GPAW_SETUP_PATH '℄. split (':')[0℄49 os.rename ('N.PBE ', path + '/N.'+self.name+'.PBE ')5051 def f(self , par):52 self. new_nitrogen_setup (* par)5354 # new_nitrogen_setup (1.1, 1.1, 1.1, 1.9, 0.4)55 #f([1.2℄)56 #f([1.2 , 1.0, 1.0℄)A.3 simplex.py1 #!/ usr/bin/python23 import atomization , setupgen4 import sys , pi
kle , random5 from LinearAlgebra import inverse6 import Numeri
 as N78 from datetime import datetime , timedelta910 N_MAX = 10011 ALPHA = 1.12 BETA = .513 GAMMA = 2.141516 """17 Default test fun
tion with one minimum at (1,2,3, ...).18 The minimum is exa
tly 42. Takes a list of
oordinates as an argument19 and returns a number .20 """21 def standardFun
tion (p):22 y = 4223 for i in range (len(p)):24 y += (p[i℄-(i+1))**225 return y2627 """28 Performs the 'amoeba '-like downhill simplex method in ndim dimensions .16

2930 p: a list of (ndim +1) ve
tors ea
h with ndim
oordinates ,31
orresponding to the verti
es of the simplex .3233 y: a list of fun
tion values evaluated at the verti
es , ordered
onsistently with the verti
es in p. y thus must have length (ndim +1) as well3435 ndim: the dimension
ount of the spa
e in question . Of
ourse this variable is mostly for show sin
e it's not really ne
essary in python3637 fToleran
e : fra
tional toleran
e used to evaluate
onvergen
e
riterion3839 fun
tion : the fun
tion to be minimized . The fun
tion must take exa
tly40 ndim parameters , ea
h parameter being one number4142 maxIterations : the maximal number of iterations to be performed before43 returning , in
ase
onvergen
e is slow4445 Returns the number of times the fun
tion has been evaluated during the46 pro
edure .4748 After invo
ation the argument lists p and y will have been modified to
ontain49 the simplex verti
es and asso
iated fun
tion values at termination of the50 pro
edure .5152 """53 def amoeba (p, y, ndim , fToleran
e , fun
tion =standardFun
tion , out=sys.stdout , dump='lastdump .dump.p
kl '):5455 mpts = ndim + 156 evaluationCount = 057 #This is probably the
oordinate sum , i.e.58 #it probably has to do with the geometri

enter of the simplex59 psum = getpsum (p)6061 while True:62 print >> out , 'Points :', p63 print >> out , 'yValues :', y64 print >> out , 'EvalCount :',evaluationCount65 print >> out66 out.flush ()6768 #Write
urrent points to file for re
overy if something goes wrong69 pi
kleDump ((p,y),dump)7071 iLow = 0 #index of lowest value72 iHigh = None #index of highest value73 i2ndHigh = None #index of se
ond highest value74 if y[0℄ > y[1℄:75 (iHigh , i2ndHigh) = (0, 1)76 else:77 (iHigh , i2ndHigh) = (1, 0)7879 #Loop through verti
es to find index values for highest /lowest entries80 for i in range (mpts):81 if y[i℄ < y[iLow ℄:82 iLow = i83 if y[i℄ > y[iHigh ℄:84 i2ndHigh = iHigh85 iHigh = i86 elif y[i℄ > y[i2ndHigh ℄:87 if i != iHigh :88 i2ndHigh = i8990 #Things should be floats already , but it's good to be safe91 relDeviation = float (abs(y[iHigh ℄ - y[iLow ℄))/abs(y[iHigh ℄+y[iLow ℄)9293 print >> out ,'Rel. deviation ', relDeviation94 out.flush ()9596 if relDeviation < fToleran
e :97 break9899 if evaluationCount >= N_MAX : 17

100 print '=== Max evaluation
ount ',N_MAX ,'ex
eeded , terminating ! === '101 #Some would
all this an error , but we'll just return102 #as if nothing has happened103 break104105 yTry = amotry (p, y, psum , ndim , fun
tion , iHigh , -ALPHA)106 evaluationCount += 1107108 if yTry <= y[iLow ℄:109 yTry = amotry (p, y, psum , ndim , fun
tion , iHigh , GAMMA)110 evaluationCount += 1111 elif yTry >= y[i2ndHigh ℄:112 ySave = y[iHigh ℄113 yTry = amotry (p, y, psum , ndim , fun
tion , iHigh , BETA)114 evaluationCount += 1115 if yTry >= ySave :116 for i in range (mpts):117 if i != iLow:118 for j in range (ndim):119 psum[j℄ = .5 * (p[i℄[j℄ + p[iLow ℄[j℄)120 p[i℄[j℄ = psum[j℄121 y[i℄ = fun
tion (psum)122 evaluationCount += ndim123 psum = getpsum (p)124125 return evaluationCount126127 """128 Extrapolates through or partway to simplex fa
e , possibly finding a better129 vertex130 """131 def amotry (p, y, psum , ndim , fun
tion , iHigh , fa
tor):132 #Wonder what these 'fa
tors ' do exa
tly133 fa
tor1 = (1. - fa
tor)/ndim134 fa
tor2 = fa
tor1 - fa
tor135136 pTry = [psum[j℄* fa
tor1 - p[iHigh ℄[j℄* fa
tor2 for j in range (ndim)℄137138 yTry = fun
tion (pTry)139140 if yTry < y[iHigh ℄:141 y[iHigh ℄ = yTry142 for j in range (ndim):143 psum[j℄ += pTry[j℄ - p[iHigh ℄[j℄144 p[iHigh ℄[j℄ = pTry[j℄145146 return yTry147148149 """150 Given a list of (ndim +1) ve
tors ea
h with ndim
oordinates ,151 returns the list of
oordinate sums a
ross ve
tors ,152 i.e. the n'th element is the sum of the n'th
oordinates of all ve
tors in p153 """154 def getpsum (p):155 mpts = len(p)156 ndim = mpts - 1157158 psum = array (ndim)159 for i in range (ndim):160 psum[i℄ = sum ([q[i℄ for q in p℄)161162 return psum163164165 """166 Returns a list of vertex
oordinates forming a regular simplex around the167 designated
enter , where the size argument is the max vertex -
enter distan
e .168169 This method simply generates a random simplex , and may fail to do so at a170 very small probability (if randomly generated ve
tors are linearly dependent)171 """172 def getInitialPoints (
enter =[0,0℄, size =1, seed =0):173 ndim = len(
enter) 18

174 mpts = ndim + 1175 r = random .Random (seed)176177 points = array (mpts)178 for i in range (ndim +1):179 points [i℄ = [(r.random () -.5)*size+
enter [j℄ for j in range (ndim)℄180181 return points182183 """184 Runs the amoeba optimization fun
tion with sensible values185 """186 def smalltest ():187 f = standardFun
tion188 p = getInitialPoints ([7,3,2,6 ,3℄)189 print 'Initial points gotten '190 print 'Mapping p through f'191 y = map(f, p)192 print 'Done mapping '193 ndim = len(p) -1194 fToleran
e = .000001195196 amoeba (p, y, ndim , fToleran
e , f)197198 print 'Done!'199 #print 'p', p200 #print 'y', y201 print 'p[0℄ ',p[0℄202203
lass SetupEvaluator :204205 def __init__ (self , setup):206 setup = 'opt.'+setup207 self.setup = setup208 self.generator = setupgen .SetupGenerator (setup)209210 """211 Runs a full test of a given GPAW setup212 """213 def badness (self , args):214 refEnergy = -10.55215 refDist = 1.102216217 try:218 self.generator .f(args) #new setup219 print 'New setup
reated '220221 overallBadness = 0222223 startTime = datetime .now ()224225 print 'Cal
ulating atomization energy '226 energyBadness = 1/.05**2 #badness == 1 for deviation == .05 eV227 (
1 ,
2) = atomization . atomizationCal
ulators (out=None ,228 setup =self.setup)229 Ea = atomization .
al
Energy (
1 ,
2 ,a=6.0)230 print 'Energy ',Ea231 db = energyBadness * (Ea - refEnergy)**2232 print 'Energy badness ',db233 overallBadness += db234235 print 'Cal
ulating bond length '236 d = bondLength (self.setup)237 distan
eBadness = 1./.005**2238 db = distan
eBadness * (d - refDist)**2239 overallBadness += db240 print 'Bond length ',d241 print 'Bond length badness ',db242243 print 'Cal
ulating energy flu
tuation amplitude '244 DE = energyFlu
tuationTest (self.setup)245 energyFlu
tuationBadness = 1./.005**2246 db = energyFlu
tuationBadness * DE **2247 overallBadness += db 19

248 print 'Flu
tuation magnitude ',DE249 print 'Flu
tuation badness ',db250251 print 'Cal
ulating
onvergen
e rate '252 hVar =
onvergen
eTest (self.setup)253
onvergen
eBadness = 1./.2**2254 db =
onvergen
eBadness * hVar255 overallBadness += db256 print 'Energy differen
e ',hVar257 print 'Energy differen
e badness ',db258259 print 'Cal
ulating temporal badness '260 timeBadness = 1./20**2 #20 se
onds --> badness == 1261 dt = (datetime .now () - startTime).se
onds262 db = timeBadness * dt **2263 overallBadness += db264 print 'Time ',dt265 print 'Time badness ',db266267 print 'Overall badness ',overallBadness268269 ex
ept KeyboardInterrupt :270 raise KeyboardInterrupt #Don 't ignore keyboard interrupts271 #ex
ept :272 # return 10000.273274 return overallBadness275276 """277 Returns the bond length . Cal
ulates energy at three lo
ations around the278 referen
e bond length , interpolates with a 2nd degree polynomial and returns279 the minimum of this polynomial whi
h would be roughly equal to the bond length280 without engaging in a large whole relaxation test281 """282 def bondLength (setup):283 print 'Distan
e test '284 d0 = 1.102285 dd = (.2 / 140.)**.5 #around .04 A. Bond properties
orrespond to286 #an energy of E = .5 k x**2 with k = 140 eV/A**2287 #If we want .1 eV deviation then the above dd should be used288
al
 = atomization .MakeCal
ulator (atomization .molN.nbands2 ,289 out=None , setup =setup)290 D = [d0 -dd , d0 , d0+dd℄291 #Cal
ulate energies at the three points292 E = [atomization .energyAtDistan
e (d,
al
=
al
 , a=5.5) for d in D℄293 print 'Distan
es ',D294 print 'Energies ',E295 print296 #Now find parabola and determine minimum297298 x = N.array (D)299 y = N.array (E)300301 A = N.transpose (N.array ([x**0, x**1, x**2℄))302
 = N.dot(inverse (A), y)303 print 'Coordinates ',
304305 X = -
[1℄ / (2.*
[2℄) # "-b/(2a)"306 print 'Bond length ',X307308 #print
309 #print N.dot(A,
) - y310311 return X312313 """314 Returns whatever was written by pi
kledump315 """316 def pi
kleLoad (fileName):317
ontent = pi
kle .load(open(fileName))318 return
ontent319320 """321 Writes the data to the file , deleting any other
ontent20

322 """323 def pi
kleDump (data ,fileName):324 pi
kle .dump(data , open(fileName , 'w'))325326 """327 Runs a
omplete optimization .328329 All files pertaining to the test will have file names
ontaining330 the testName parameter .331332 fToleran
e is the termination toleran
e of the333 amoeba fun
tion .334335 If initData is spe
ified it should be the file name of336 a pi
kle file
ontaining a set of points and values (p,y) that are337
ompatible with the amoeba fun
tion as spe
ified in its do
umentation .338 """339 def seriousTest (testName ='test ', fToleran
e = .002, ndims =2, initData =None):340341 fileName =testName +'.log '342343 outFile = open(fileName , 'w')344 evaluator = SetupEvaluator (testName)345346 f = evaluator .badness347 sensibledata = [1.1, 1.1, 1.1, 2.2, 0.4℄348 #Defaults for new_nitrogen_setup . Warning : hard
oded here ,349 #be sure to
hange this if new_nitrogen_setup is
hanged350351 if initData is None:352 dumpFile = testName +'.dump.p
kl '353354 p = getInitialPoints (sensibledata [: ndims ℄, size =.1)355 print >> outFile , 'Initial points gotten '356 print >> outFile , 'Points ',p357 print >> outFile , 'Mapping p through f'358 outFile .flush ()359 y = map(f, p)360 print >> outFile , 'Done mapping , dumping to file '361 print >> outFile , 'y values :',y362 pi
kleDump ((p,y), dumpFile)363 else:364 (p,y) = pi
kleLoad (dumpFile)365 print >> outFile , 'Initial values loaded from ',dumpFile366 print >> outFile , 'p: ',p367 print >> outFile , 'y: ',y368369 outFile .flush ()370371 ndim = len(p) -1372373 print >> outFile , 'Amoeba
ommen
ing '374 print >> outFile , '----------------- '375 outFile .flush ()376377 amoeba (p,y,ndim ,fToleran
e , f, out=outFile , dump=dumpFile)378379 """380 Plots the energy of a N2 mole
uleas a fun
tion of different resolutions381 (h-values) and returns the maximal differen
e382 """383 def
onvergen
eTest (setup):384 A = atomization385 h = [.15, .17, .20℄386
al
 = [A.MakeCal
ulator (A.molN.nbands2 , out=None , h=h0 ,387 setup =setup) for h0 in h℄388 E = [A.energyAtDistan
e (A.molN.d,
al
=
, a=4.) for
 in
al
℄389390 print 'h',h391 print 'E',E392393 return max(E) - min(E)394395 """ 21

396 Returns the differen
e between the energy of a nitrogen mole
ule at the
enter397 of the unit
ell and the energy of one translated by h/2 along the z axis.398 """399 def energyFlu
tuationTest (setup):400 A = atomization401 h = .2402
al
 = A.MakeCal
ulator (A.molN.nbands2 , out=None , setup =setup , h=h)403 d = A.molN.d404 E1 = A.energyAtDistan
e (d,
al
=
al
 , a=4.)405 E2 = A.energyAtDistan
e (d,
al
=
al
 , a=4., dislo
ation =(0.,0., h/2.))406407 return E2 -E1408409 """410 '[None ℄* length ' looks slightly silly so let 's initialise our lists with a411 ni
ely named fun
tion instead412 """413 def array (length):414 return [None ℄* length

22

