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• Two-dimensional topological insulators 
 
• Topological in-plane heterostructure with 1T’-MoS2 
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Standard derivation 

 

 The Dirac equation is 

𝛽𝑚𝑐2 + 𝑐𝜶 ⋅ 𝒑 + 𝑉(𝑥) 𝜓 𝑥 = 𝐸𝜓(𝑥) 

where α and β are 4x4 matrices, which can be written in terms of the  
Pauli matrices. 

𝜓 𝑥 =
𝜉(𝑥)
𝜂(𝑥)

 

eliminating η and expanding to second order in (E – V )/mc2 yields 

Writing 

𝑝2
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𝑝4

8𝑚3𝑐2
−
𝑖ℏ𝒑 ⋅ 𝜵𝑉

4𝑚2𝑐2
+
ℏ𝝈 ⋅ 𝒑 × 𝜵𝑉

4𝑚2𝑐2
𝜉 𝑥 = 𝐸𝑠𝜉 𝑥  

Kinetic correction Darwin Spin-orbit 

where ξ is a two-component spinor 
−
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spherical symmetry 



Implementation of SO in GPAW 

 

 

The full SO Kohn-Sham Hamiltonian can then be set up in a basis of  

scalar-relativistic states 

Hn1n2𝜎1𝜎2 = 𝛿𝜎1𝜎2𝛿𝑛1𝑛2𝜀𝑛1𝜎1 + 𝜓𝑛1𝜎1 𝐻
𝑆𝑂 𝜓𝑛2𝜎2  

𝜓𝑛1𝜎1 𝐻
𝑆𝑂 𝜓𝑛2𝜎2 =  〈𝜓 𝑛1|𝑝 𝑖1

𝑎 〉

𝑎𝑖1𝑖2

〈𝜙𝑖1
𝑎 𝜎1|𝐻

𝑆𝑂 𝜙𝑖2
𝑎 𝜎2 〈𝑝 𝑖2

𝑎 𝜓 𝑛2  

Since the spin-orbit coupling involves the gradient of the potential,  

the dominant contribution is near the nucleii 

We assume that all SO is captured inside the PAW augmentation sphere 

where 

𝜓𝑛𝜎 = 〈𝑝𝑖
𝑎 

𝑎𝑖

𝜓 𝑛 𝜙𝑖
𝑎𝜎  



Implementation of SO in GPAW 

 

 For spherically symmetric potentials the atomic orbitals factorizes into 

a radial part and spherical harmonic 

〈𝜙𝑖1
𝑎 𝜎1|𝐻

𝑆𝑂 𝜙𝑖2
𝑎 𝜎2 = 〈𝑓𝑖1

𝑎𝑌𝑖1
𝑎𝜎1|𝐻

𝑆𝑂 𝑓𝑖2
𝑎𝑌𝑖2
𝑎𝜎2  

= −
1

2𝑚2𝑐2
〈𝑌𝑖1
𝑎𝜎1|𝑺 ⋅ 𝑳 𝑌𝑖2

𝑎𝜎2 〈𝑓𝑖1
𝑎|
1

𝑟

𝑑𝑉

𝑑𝑟
𝑓𝑖2
𝑎  

We thus have to evaluate 

The radial part is calculated numerically on a non-uniform grid. The angular  

matrix elements have been tabulated. For example  

〈𝑝𝑖|𝐿𝑥 𝑝𝑗 =
0 −𝑖 0
𝑖 0 0
0 0 0

,   𝑖, 𝑗 ∈ 𝑦, 𝑧, 𝑥  

𝜙𝑖
𝑎 𝒓 = 𝑓𝑖 𝑟 𝑌𝑖(𝜙, 𝜃) 



fcc Pt 

 

 

Spin degeneracy is protected by inversion symmetry 



fcc Pt 

 

 

The double degenerate d states carry a two- 
dimensional irreducible representation of C4v 
 
Symmetry is reduced to C4 by spin-orbit coupling 

Spin-orbit corrections  
of up to 1.5 eV 



bcc Fe 

 

 

Color scale denotes spin character:  Sn(k) = 〈𝜓𝑘𝑛 𝜎𝑧 𝜓𝑘𝑛〉 



bcc Fe 

 

 

The band structure depends on the direction relative to the spin projection 



MoS2 

 

 
Bulk MoS2 is composed of stacked 
two-dimensional sheets bound by 
van der Waals interactions 

The indvidual sheets have a honeycomb 
lattice similar to graphene or hBN 

Brillouin zone 



Monolayer MoS2 

 

 

=   0.149 eV 

Color scale denotes spin character:  Sn(k) = 〈𝜓𝑘𝑛 𝜎𝑧 𝜓𝑘𝑛〉 

Lack of inversion symmetry 



Topology 

 

 

Number of holes in two-dimensional manifolds 

http://www.google.dk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiy2riAjKvJAhXIiywKHb-QDOsQjRwIBw&url=http://www.livescience.com/51307-topology.html&bvm=bv.108194040,d.bGg&psig=AFQjCNEVJUOqLkj8CRfRsu8h26Rzu6nTzQ&ust=1448524122248851


Topology 

 

 

-2 

Winding number around ”stick” 

-1 0 

2 1 3 

Quantum Hall conductivity: 𝜎𝐻 = 𝑛
𝑒2

ℎ
 

Winding number of occupied Bloch states around Brillouin zone edge 

Thouless et al. Phys. Rev. Lett. 49, 405 



Edges of two-dimensional insulator 

 

 

𝑘𝑦 𝑘𝑦 

BZ 

𝑘𝑥 

Time-reversal invariant points 

Bulk 2H-MoS2 



Edges of two-dimensional insulator 

 

 

Two things may happen at the edge: 

Kramers 
degenerate pairs 

Bulk 

Edge 

𝑘𝑦 𝑘𝑦 
BZ 

𝑘𝑥 



Edges of two-dimensional insulator 

 

 

Or: 

Kramers 
degenerate pairs 

𝑘𝑦 𝑘𝑦 
BZ 

𝑘𝑥 



Edges of two-dimensional insulator 

 

 

The distinction between odd or even number of crossings at edges is a property  
of the bulk material and comprises a topological Z2 classification of 2D insulators 



Edges of two-dimensional insulator 

 

 

The distinction between odd or even number of crossings at edges is a property  
of the bulk material and comprises a topological Z2 classification of 2D insulators 

For materials with inversion symmetry the topological index ν can be calculated as 

−1 𝜈 =  𝜉𝑚(Γ𝑎)

Γ𝑎 𝑚

 

Where the product is over occupied Kramers pairs of inversion eiegnvalues at the TR 
invariant points – implemented in GPAW in pw mode 

BZ 
Γ1 

Γ2 Γ3 

Γ4 



1T’-MoS2 

 

 

Qian et al. Science 346, 1344 (2014) 



1T’-MoS2 

 

 



1T’-MoS2 

 

 

 𝜉𝑚 Γ𝑎 = −1

Γ𝑎 𝑚

 



Edge states 

 

 
Edge states can be obtained by calculating the spectral function in a local basis set: 

𝐴𝑆 𝑘∥, 𝜔 = −
1

𝜋
 𝐼𝑚 𝐺𝑖𝑖

𝑅(𝑘∥, 𝜔 )

𝑖∈𝑆

 

S 

The transformation is accomplished with Wannier functions using Wannier90.  
Interface recently been implemented in GPAW – see tutorial for details 

The Greens functions can be obtained iteratively once the Hamiltonian 
is transformed to a local basis 

𝐺𝑖𝑗
𝑅 = (𝜔 + 𝑖𝜂 − 𝐻𝑖𝑗)

−1 

Sancho et al. J. Phys. F 15, 851 (1985) 



1T’-MoS2 

 

 

Bulk spectral function Surface spectral function 



In-plane topological heterostructures 

 

 

Topological Insulator 
(Quantum Spin Hall Insulator) 

Normal Insulator 



1T’-MoS2 – Adsorbed O  

 

 



1T’-MoS2 – Adsorbing O  

 

 
Distance from equilibrium 



1T’-MoS2 – Adsorbing O  

 

 



1T’-MoS2 –  boundary with NI  

 

 

𝐻12 

𝐻11 𝐻22 

𝐻23 𝐻01 𝐻34 

𝐻33 
…𝐻01 𝐻34... 

…𝐻11 𝐻33... 

Retarded Greens function at interface can be obtained iteratively 



1T’-MoS2 –  partly adsorbed O  

 

 



1T’-MoS2 –  partly adsorbed O  

 

 

Interface with oxygen adsorbate region Bare edge 



1T’-MoS2 –  partly adsorbed O  

 

 



Outlook 

 
• Topological in-plane heterostructures could 
    comprise a clever way of designing 1D electronics 
 
• Many other adsorbates are possible 
 
• The topological boundary states needs to be  
    analyzed further. What about other edges? 

 
•  The structure is hardly thermodynamically stable! 



Thank you for the attention 

 


