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lT"MOSZ

Designing topological
In-plane heterostructures from
first principles
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Outline

Spin-orbit coupling in GPAW
Two-dimensional topological insulators
Topological in-plane heterostructure with 1T°-MoS,

Metallic boundary states
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Standard derivation
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The Dirac equation is

|Bmc? + ca-p+ V(x)|p(x) = Ep(x)

where a and B are 4x4 matrices, which can be written in terms of the
Pauli matrices.

Writing
wo=[i

eliminating n and expanding to second order in (E — V' )/mc? yields

Kinetic correction Darwin Spin-orbit
2 4 -
D p ihp-VV ho-pXxXVV
2m V) - 8m3c2  4m2c2 T 4m?c? §x) = Esf(x)
\spherical symmetry
where € is a two-component spinor S.L 1dV

2ma2c?r dr
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Implementation of SO in GPAW
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Since the spin-orbit coupling involves the gradient of the potential,
the dominant contribution is near the nucleii

We assume that all SO is captured inside the PAW augmentation sphere
where

Vo) = ) (P [Bn)lg50)

The full SO Kohn-Sham Hamiltonian can then be set up in a basis of
scalar-relativistic states

Hn1n20'10'2 = 60’10'25711”28”10'1 T <l/)n10'1|HSO|l/)n20'2>

(Vs HO [Py} = ) g IS 021 H| $2 0 )BE [,

ai1i2
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Implementation of SO in GPAW
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For spherically symmetric potentials the atomic orbitals factorizes into
a radial part and spherical harmonic

¢i'(r) = fi(NY;($,0)
We thus have to evaluate

(Bf: 01 |HC| @ 02) = (fSY o1 [HO|f 3V 02)

dv

1 1
= — o (YqaulS - LYg o) fit | ———|f;)

The radial part is calculated numerically on a non-uniform grid. The angular
matrix elements have been tabulated. For example

0O —i O
illelppy =i 0 o], i,j € {y,zx}
O 0 O
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Spin degeneracy is protected by inversion symmetry
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Spin-orbit corrections
ofupto1.5eV

fcc Pt
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The double degenerate d states carry a two-
dimensional irreducible representation of C,,

Symmetry is reduced to C, by spin-orbit coupling



bce Fe

Sn(K) = (Yinloz[Pin)

Color scale denotes spin character:
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bce Fe
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The band structure depends on the direction relative to the spin projection



—

! Mos, CAMd

Center for Atomic-scale Materials Design

i

Bulk MoS, is composed of stacked
two-dimensional sheets bound by
van der Waals interactions

The indvidual sheets have a honeycomb
lattice similar to graphene or hBN
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Monolayer MoS,
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Lack of inversion symmetry

eq(k) [eV]

I = 0.149 eV

Color scale denotes spin character: Sp(K) = Winlo, | Yrn)
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Topology
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CAMd
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triple torus

Number of holes in two-dimensional manifolds
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Winding number around "stick”

Quantum Hall conductivity: op =

Winding number of occupied Bloch states around Brillouin zone edge

Thouless et al. Phys. Rev. Lett. 49, 405



Edges of two-dimensional insulator CAMJ
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Bulk 2H-MoS,

ey

Time-reversal invariant points



Edges of two-dimensional insulator
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Ap(k,w)
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Two things may happen at the edge:
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Edges of two-dimensional insulator CAMJ
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(a) Conduction Band (b)  Conduction Band
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Edges of two-dimensional insulator
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(b) Conduction Band
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The distinction between odd or even number of crossings at edges is a property
of the bulk material and comprises a topological Z, classification of 2D insulators
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Edges of two-dimensional insulator
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E|@) Conduction Band E
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(b) Conduction Band

The distinction between odd or even number of crossings at edges is a property
of the bulk material and comprises a topological Z, classification of 2D insulators

For materials with inversion symmetry the topological index v can be calculated as

(D" = | [ &m@mo)
T, m

Where the product is over occupied Kramers pairs of inversion eiegnvalues at the TR
invariant points — implemented in GPAW in pw mode
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Qian et al. Science 346, 1344 (2014)
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en(k) [eV]

lT"MOSZ
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Edge states
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Edge states can be obtained by calculating the spectral function in a local basis set:

1
As(k”,(,()) = —Ez Im Gg(k”,a))
(€S S

G{; - ((1) + l77 — Hij)_l

The Greens functions can be obtained iteratively once the Hamiltonian

is transformed to a local basis
Sancho et al. J. Phys. F 15, 851 (1985)

The transformation is accomplished with Wannier functions using Wannier90.
Interface recently been implemented in GPAW — see tutorial for details
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A()(k, CU)

Bulk spectral function Surface spectral function
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In-plane topological heterostructures
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QSHI

Normal Insulator Topological Insulator
(Quantum Spin Hall Insulator)
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en(k) [eV]

1T°-MoS, — Adsorbed O
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1T’-MoS, — Adsorbing O

Distance from equilibrium
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Retarded Greens function at interface can be obtained iteratively
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1T°-MoS, — partly adsorbed O

Ao(k )
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1T°-MoS, — partly adsorbed O
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A()(k, w)

Interface with oxygen adsorbate region Bare edge
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1T°-MoS, — partly adsorbed O

Ay(k, W)

cale Materials Design



Outlook

Topological in-plane heterostructures could
comprise a clever way of designing 1D electronics

Many other adsorbates are possible

The topological boundary states needs to be
analyzed further. What about other edges?

The structure is hardly thermodynamically stable!
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