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Overview of current projects
• Creating a big database for: 

DFT + Excited states + Molecular dynamics  
(writing parsers) 

• Error bars in DFT calculations (finite basis set)  
Useful for comparing calculations, or not?

• Self-consistent  
hybrid functionals



Outline

• Brief overview of the NOMAD project. 

• “Parsers” that converts output from electronic 
structure codes to a common format 

• “Error bars” from basis and k-point sampling 

• Self-consistent hybrid functionals in GPAW



NOMAD overview

• Virtual reality (fx: exciton (r,r’)) 
• Remote visualisation  

(structures, wave-functions, etc)

• Stores your data for at least 10 years 

• Advanced analysis tools  
(machine learning etc)

3,027,865 calculations today



Nomad: Producing data
Repository:

output files from 
all codes are 

welcome 
(file.gpw)

Archive:
common data 

format 
(contains 

everything that is 
in the output files)

50 most cited codes 
(GPAW, VASP, Gaussian, 

ASAP…)

Conversion

http://nomad-repository.eu/cms/

Big data analytics 
Materials Encyclopedia 

…



Nomad: Producing data
Parsers done at DTU for: 
• GPAW | works 
• MOPAC | works 
• ASAP | works 
• ATK | not started 
• GROMACS | created

All data should be parsed: 
Structures 
Energies 

Electron density 
Wave functions 

SCF iteration time 
Force field information 

Constraints 
…Start uploading your 

favourite GPAW gpw files
come June 15th!



Error bars project

Next step: something about the error due to:
• finite basis set  
• k-point sampling 
• other numerical settings? 

Should be useful for judging the quality of data in the 
NOMAD database 
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INTRODUCTION:The reproducibility of results
is one of the underlying principles of science. An
observation canonly be accepted by the scientific
community when it can be confirmed by inde-
pendent studies. However, reproducibility does
not come easily. Recent works have painfully
exposed cases where previous conclusionswere
not upheld. The scrutiny of the scientific com-
munity has also turned to research involving
computer programs, finding that reproducibil-
ity depends more strongly on implementation
than commonly thought. These problems are
especially relevant for property predictions of
crystals and molecules, which hinge on precise
computer implementations of the governing
equation of quantum physics.

RATIONALE:Thiswork focuses ondensity func-
tional theory (DFT), a particularly popular quan-

tum method for both academic and industrial
applications. More than 15,000 DFT papers are
published each year, and DFT is now increas-
ingly used in an automated fashion to build
large databases or applymultiscale techniques
with limited human supervision. Therefore, the
reproducibility of DFT results underlies the
scientific credibility of a substantial fraction of
current work in the natural and engineering
sciences. A plethora of DFT computer codes
are available, many of them differing consid-
erably in their details of implementation, and
each yielding a certain “precision” relative to
other codes. How is one to decide formore than
a few simple cases which code predicts the cor-
rect result, and which does not? We devised a
procedure to assess the precision of DFT meth-
ods and used this to demonstrate reproduci-
bility among many of the most widely used

DFT codes. The essential part of this assessment
is a pairwise comparison of a wide range of
methodswith respect to their predictions of the
equations of state of the elemental crystals. This
effort required the combined expertise of a large
group of code developers and expert users.

RESULTS:We calculated equation-of-state data
for four classes of DFT implementations, total-
ing 40 methods. Most codes agree very well,
with pairwise differences that are comparable
to those between different high-precision exper-

iments. Even in the case of
pseudization approaches,
which largely depend on
theatomic potentials used,
a similar precision can be
obtainedaswhenusing the
full potential. The remain-

ing deviations are due to subtle effects, such as
specific numerical implementations or the treat-
ment of relativistic terms.

CONCLUSION: Our work demonstrates that
the precision of DFT implementations can be
determined, even in the absence of one absolute
reference code. Although this was not the case 5
to 10 years ago,most of the commonlyused codes
and methods are now found to predict essen-
tially identical results. The established precision
of DFT codes not only ensures the reproducibility
of DFT predictions but also puts several past and
future developments on a firmer footing. Any
newly developedmethodology can nowbe tested
against the benchmark to verify whether it
reaches the same level of precision. NewDFT ap-
plications can be shown to have used a suffi-
ciently precise method.Moreover, high-precision
DFT calculations are essential for developing im-
provements to DFTmethodology, such as new
density functionals, whichmay further increase
the predictive power of the simulations.▪
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Recent DFTmethods yield reproducible results.Whereas older DFT implementations predict different values (red darts), codes have now evolved to
mutual agreement (green darts).The scoreboard illustrates the good pairwise agreement of four classes of DFT implementations (horizontal direction)
with all-electron results (vertical direction). Each number reflects the average difference between the equations of state for a given pair of methods,with
the green-to-red color scheme showing the range from the best to the poorest agreement.

ON OUR WEB SITE
◥

Read the full article
at http://dx.doi.
org/10.1126/
science.aad3000
..................................................
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Delta DFT:
DFT codes can be converged to good agreement 



Error bars project
Some simple questions

• Is convergence with k-points and  
basis set independent? 

• Can we give error estimates?



Error bars project
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Symbol

Binary solid

not
used

Periodic Table of Chemical Elements for Binary solids

Codes: 
GPAW | PW | DTU 

VASP | PW | TU Graz 
Exciting | LAPW | HU Berlin 

AIMS | NAO | FHI Berlin

Properties:
Structures 
Energies 

Band gaps

Functional: PBE and LDA 
90 Binary solids 
73 Elemental (from ∆DFT) 
-> ~5000 calculations 

(+ random systems 
from the NOMAD database)



Error bars project
Total energies (binaries): light vs really tight basis

AIMS
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GPAW

Error from k-point sampling looks “small”  
compared to basis set



Error bars project
Total energies (binaries)

Things really improve at Ecut = 600eV!

MAE: Mean absolute error 
MAXAE: Max absolute error 
MAPE: Mean absolute percentage error



Error bars project
Cohesive energies (binaries)

Energy differences benefit  
from error cancelation

MAE: Mean absolute error 
MAXAE: Max absolute error 
MAPE: Mean absolute percentage error



Error bars project

N

O

F

Elemental solids

N, O and F are the bad guys!



Error bars project
Binaries without 

N, O and F

N, O and F are the bad guys!

Binaries



Error bars project
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and elemental solids similar 

Simple error  
estimate suggestion:
simply use the error for the 
worst element.



Error bars project
Is convergence with basis set and k-points independent?

E(kpts, basis) = F1(kpts) + F2(basis)

Å Å
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Error bars project
Also need to look at: 
- band gaps  
- structures…



Self-consistent hybrid 
functionals (HSE, PBE0, …)

Challenges:
• Slow (compared to GGA) 
• Convergence is  

supposed to be difficult

Currently in GPAW
• Non-SC with PW and k-points 
• SC with FD Gamma point only

VASP tells you to use:  
Damped “molecular dynamics”



Self-consistent hybrid 
functionals (HSE, PBE0, …)

Challenges:
• Convergence is difficult

hg|ĥ|g0iHamiltonian in PW basis

We are trying with damped molecular dynamics 
but also brute force:

ĥHF = t̂+ v̂H + v̂F + ...

Should be stable, but limited in supercell size



Thank you for the attention!


