

European Centre of Excellence (CoE)

and something else...

Mikkel Strange (but presented by Karsten W. Jacobsen)

Overview of current projects

 Creating a big database for: DFT + Excited states + Molecular dynamics (writing parsers)

- **GPRM!**
- Error bars in DFT calculations (finite basis set) Useful for comparing calculations, or not?

Outline

- Brief overview of the NOMAD project.
- "Parsers" that converts output from electronic structure codes to a common format
- "Error bars" from basis and k-point sampling
- Self-consistent hybrid functionals in GPAW

NOMAD overview

Stores your data for at least 10 years

Nomad: Producing data

Nomad: Producing data

Parsers done at DTU for:

- GPAW | works
- MOPAC | works
- ASAP | works
- ATK | not started
- GROMACS | created

Start uploading your favourite GPAW gpw files come June 15th! All data should be parsed: Structures Energies Electron density Wave functions SCF iteration time Force field information Constraints

. . .

Error bars project Delta DFT: DFT codes can be converged to good agreement

SCIENCE sciencemag.org

25 MARCH 2016 • VOL 351 ISSUE 6280 1415

Next step: something about the error due to:

- finite basis set
- k-point sampling
- other numerical settings?

Should be useful for judging the quality of data in the NOMAD database

Some simple questions

- Is convergence with k-points and basis set independent?
- Can we give error estimates?

18 VIIIA

Codes:

GPAW | PW | DTU VASP | PW | TU Graz Exciting | LAPW | HU Berlin AIMS | NAO | FHI Berlin

Properties:

Structures Energies Band gaps

225															2			
	2 11 4	2 IIA Periodic Table of Chemical Elements for Binary solids															He	
1	2 11A																- 10	
225	4 216											5 194	6 225	7 225	8 225	9 225	10	
	BeS											BN	TiC			NaF	Ne	
225	12 225											12 016	14 016	15 016	16 016	17 016	10	
225	Mg											ΔΙ	Si	P 13 210	S		Ar	
:	MgO	3 IIIA	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	AIP	SiC	InP	ZnS	CuCl		
225	20 225	21 225	22 225	23 225	24 225	25 225	26 225	27 225	28 225	29 216	30 216	31 216	32 160	33 216	34 186	35 225	36	
	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
I	CaO	ScS	TiN	VC	CrN	MnS	FeO	CoO	NiO	CuBr	ZnO	GaP	TeGe	GaAS	CdSe	KBr		
225	38 225	39 225	40 225	41 225	42 187	43 14	44 136	45 136	46 131	47 225	48 225	49 216	50 62	51 216	52 216	53 225	54	
•	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe	
21	SrO	YN	ZrC	NbC	MoC	TcO ₂	RuO	RhO	PdO	AgCI	CdO	InP	SnS	InSb	ZnTe	Lil		
225	56 225	57-71	72 225	73 225	74 187	75 221	76 187	77 136	78 131	79 224	80 225	81 225	82 225	83 215	84 225	85	86	
	Ba	La-Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
J	BaO	Lanthanide	HtC	TaC	WC	ReO	BOs	lrQ	PtO	Au ₂ S	HgF	TICI	PbS	BiF ₅	PoO			
	88 225	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
	Ra PeE	Ac-Lr	Rt	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo	
	ГЛАГ	Actinide								· · · · · ·							L	
				50 005	50 005	co	61 164 co or co or ct or its or					105 1005 en en en en				005 70 005 71 005		
			57 176	58 225	59 225	60	01 104	62 225	63 225	64 225	65 225.	00 225	67 225	68 225	69 225 T	70 225	71 225	
				CeN	PrN	NdN	PmO ₀	SmN	Eu	GdN		DvN	HoN	Er FrN	TmN	YhN		
			LdCI	Cell	1 AN	NUN	1 11/02	51114	Edite	Guin	- DN	2 yru	HON	LAN	L'ALTIN .	- I DIN	EU.	
			00 176	00 005	01	02	02	04	05	06	07	00		100	101	102	102	
cegroup	not,		09 1/0 Ac	90 225 Th	91 Pa	92	93 No	94 Pu	95 Am	90 Cm	9/ BL	98	99 Fe	Em	L01	102 No	103	
	used		AcCl	ThC	Га		, ivb	Fu	AIII				L.5	''''				
SOUG			Acci	The														

Functional: PBE and LDA 90 Binary solids 73 Elemental (from △DFT) -> ~5000 calculations (+ random systems from the NOMAD database)

Total energies (binaries): light vs really tight basis

Total energies (binaries)

MAE: Mean absolute error MAXAE: Max absolute error MAPE: Mean absolute percentage error

Things really improve at $E_{cut} = 600 \text{eV}!$

Cohesive energies (binaries)

MAE: Mean absolute error MAXAE: Max absolute error MAPE: Mean absolute percentage error

N, O and F are the bad guys!

N, O and F are the bad guys!

Max abs error for binaries and elemental solids similar

Simple error estimate suggestion:

simply use the error for the worst element.

Is convergence with basis set and k-points independent?

 $E(kpts, basis) = F_1(kpts) + F_2(basis)$

 $\Delta E_{tot}(\rho_k) = E_{tot}(\rho_k = 8) - E_{tot}(\rho_k) \quad \text{Independent or not?}$

Also need to look at:

- band gaps
- structures...

Self-consistent hybrid functionals (HSE, PBE0, ...)

Currently in GPAW

- Non-SC with PW and k-points
- SC with FD Gamma point only

Challenges:

- Slow (compared to GGA)
- Convergence is supposed to be difficult

VASP tells you to use: Damped "molecular dynamics"

Self-consistent hybrid functionals (HSE, PBE0, ...)

Challenges:

• Convergence is difficult

We are trying with damped molecular dynamics but also **brute force:**

Hamiltonian in PW basis $\langle g|\hat{h}|g'\rangle$

$$\hat{h}^{HF} = \hat{t} + \hat{v}_H + \hat{v}_F + \dots$$

Should be stable, but limited in supercell size

Thank you for the attention!