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Background

* Shift of interest from ground state electronic structure
calculations towards processes and phenomena

* Many processes, such as ion-atom collisions or electron
transfer in biomolecules, are nonadiabatic

— The process is not dictated by a single electronic state,
but instead by two or more coupled states
* Ehrenfest dynamics (ED) + time-dependent DFT + PAW
= a computationally affordable framework for studying
nonadiabatic processes

Aalto University
School of Science
|



Ehrenfest dynamics in GPAW

* Conservation of the total energy leads to Ehrenfest dynamics
equations within the PAW method*
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* In practice, simultaneous solution using
— Time propagator (SICN) for the electrons
— Velocity Verlet for the nuclei
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Excited state evolution of a protected
gold cluster

* Protected metal nanoparticles = a novel class of luminescent
nanomaterials
— Applications: medicine, imaging and catalysis

* Exact mechanism at the origin of the luminescence of gold clusters
IS not understood

— Better knowledge of the interaction between the gold core and the
surrounding ligands, and the photo-induced dynamics required!

* We investigated' the photo-induced dynamics of a protected Au2
cluster using Ehrenfest dynamics in conjuction with the Delta Self-
Consistent-Field method
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The Delta-SCF+Ehrenfest method

Delta Self-Consistent Field Solving the Kohn-Sham
equations with changed

occupations

LUMO

First excited state

—_— T le —®  Excitation energy =
HOMO Exs — Exs

Ground state

Energy = E?(S

* Excitation energies from spin-unpolarized Delta-SCF often
very close to linear-response TDDFT

* Initial state with Delta-SCF, photoexcitation dynamics from
Ehrenfest dynamics
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Simulation detalls

« Au, cluster protected by one
SCH, and two PH_ groups

* 300 fs long calculations with a
small initial kinetic energy

« Grid spacingh=0.2A, 5A
, vacuum around the ligands,
PBE XC functional
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Evolution of the nucleil and electrons
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Excitation energy (eV)

Linear-response TDDFT results

* for the trajectory obtained with Ehrenfest dynamics
LUMO(t = 25 fs) — LUMO(t =0)
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Increased oscillator strength at the beginning and at the end of the simulation
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Charge transfer analysis
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Au2 cluster: conclusions

* Complex dynamics in spite of the simple core

* Metal-to-ligand charge transfer during first 50 fs,
reversed thereafter
— Increased oscillator strength coupled to accumulation of charge
around the P atoms, suggesting use of stronger electron-
accepting groups in the phosphine ligands to enhance emission
* Asymmetric charge distribution in the core at the end
— Coupled to increased oscillator strength

— This mechanism might be present in the excited state dynamics
of larger protected cluster
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Stopping of high-energy ions in graphene

* Inion bombardment, the projectile loses kinetic energy to
— collisions with the nuclei (nuclear stopping)
— electronic excitations in the target or in the projectile (electronic
stopping)
* Ab initio description of electronic stopping difficult

— Especially at high impact energies, at which core electron excitations
start to contribute to the stopping process

* By bombarding graphene with high-energy ions, we studied* the
capability of Ehrenfest dynamics for modeling electronic stopping
from first principles
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Simulation detalls

Main quantity of interest: energy
deposited into the electrons of
the target and the projectile

— Can be converted into stopping

power S, if the thickness if the
target is known

Slabs composed of up to 6 layers of
graphene, 50 atoms in each layer

Periodic boundary conditions in all
directions, singly ionized projectiles

Spacing h =0.2 A, LDA XC
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Electronic stopping: experlments
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'Experiments' = best fit to a large amount of experimental data for
carbon, obtained from the semi-empirical code TRIM (black line)

In order to do the comparison, we calculate the average stopping over
the graphene surface (requires several trajectories / energy)
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Deposited energy (eV)

Deposited energy (eV)

Stopping of light ions

Top figure: ED results represent an
estimated average over the graphene surface
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Good agreement between
ED results and experiments

(TRIM) for H and He ions

Stopping power oscillates as
a function of nuclear charge
Z, In agreement with earlier
experimental observations
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High-energy stopping for LI

Li “pseudoatom” (PA): core electrons treated
as valence electrons within the PAW scheme 200 kev/u: difference between densities
~ 300 = ———— obtained using PA-Li and Li with 1s frozen

| G—OTRIM
O—+HED, Li" 1s frozen

" @-HED,Li PA, 1 layer
- [~ £1ED, Li' PA, 3 layers

[\
N
)

Deposited energy / layer (eV

0 T ‘+""'1(')0
Li energy (keV/u)

Huge improvement at high energies with the
3-electron setups!
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LI stopping: ionization

« /¥ = integrated all-electron density around the projectile just
after passing through the target
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Increase in projectile charge coupled to increase in stopping power!
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Deposited energy / layer (eV)

Results for sodium projectile and multiple

graphene layers

Na (2s, 2p included) vs frozen-core
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High-energy stopping: conclusions

* Ehrenfest dynamics provides a quantitatively accurate description
of electronic stopping for light projectiles
* Decent agreement between ED+pseudoatom results and
experiments for higher-mass projectiles at high energies
— Excellent result since core electron excitations are generally difficult to
model!
* Our computational setup can also be used for simulating the impact
of ions with a high charge state
— The projectile can be ionized in the collision with an intermediate target
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Thank you!

...and big thanks to CSC and the Triton cluster
of the Aalto University for the computational
resources!

Aalto University
School of Science
|



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

