Plasmon, exciton and RPA correlation energy : implementations and applications based on the linear density response function

<u>Jun Yan</u>





# Linear response TDDFT

#### SUNCAT

(A) SLAO



$$\begin{split} \delta n(\mathbf{r},t) &= \int d\mathbf{r}' \chi(\mathbf{r},\mathbf{r}',t) V_{ext}(\mathbf{r}',t) \\ V_{ext} : \text{external field} \\ \delta n : \text{induced density} \end{split}$$

 $\chi = \chi^0 + \chi^0 K \chi$ 

K : Coulomb (+xc) kernel

$$\chi^{0}_{\mathbf{GG}'}(\mathbf{q},\omega) = \frac{2}{V_{\mathrm{BZ}}} \sum_{k,nm} (f_{n\mathbf{k}} - f_{m\mathbf{k}+\mathbf{q}}) \frac{\langle \psi_{n\mathbf{k}} | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \psi_{m\mathbf{k}+\mathbf{q}} \rangle \langle \psi_{m\mathbf{k}+\mathbf{q}} | e^{i(\mathbf{q}+\mathbf{G}')\cdot\mathbf{r}} | \psi_{n\mathbf{k}} \rangle}{\omega + \epsilon_{n\mathbf{k}} - \epsilon_{m\mathbf{k}+\mathbf{q}} + i\eta}$$

Jun Yan, Jens. J. Mortensen, Karsten W. Jacobsen and Kristian S. Thygesen, Phys. Rev. B 83, 245122 (2011).

Jun Yan, GPAW meeting, May 22, 2013

### Overview

SLAO





# Plasmon : nanoplasmonic applications



### Plasmon : quanta of collective electronic excitations

#### SUNCAT



#### localized plasmon





Localized plasmons depend sensitively on the size, shape and dielectric environment of the nanoparticles, they can localize and enhance electromagnetic wave.

#### Applications :

Surface enhanced Raman spectroscopy, Chemical and biological sensing, Plasmon enhanced photocatalyst Propagating plasmons can recover evanescent wave at interface, have negative refractive index

Applications: Photonic circuit Optical imaging

#### Plasmonic Field : Classical -> Quantum



## Application I : Graphene @ substrate

### The effect of substrate at the weak interaction limit

Substrate:

- Change the interface structure / electronic structure
- Introduce doping
- Dielectric screening

Static Vs Dynamical effects

Graphene is weakly bounded to the SiC substrate. Fermi level is shifted upward by 0.05 eV.

**back** 



## Graphene @ semiconducting SiC(0001) substrate

#### **SUN<del>CAT</del>**



## Graphene @ metallic Al(III) substrate

**SLAC** 



• Plasmon is completely quenched by a metallic aluminum substrate.

The effect of adsorbate with strong interaction : a charge-transfer like excitation



Jun Yan, Karsten W. Jacobsen and Kristian S. Thygesen, Phys. Rev. B 84, 235430 (2011).

back

SUNCAT

### Application III: acoustic plasmons at noble metal surfaces **SUNEAT**





Expt : M. Rocca, Phys. Rev. Lett. 110, 127405 (2013)



Jun Yan, Karsten W. Jacobsen and Kristian S. Thygesen, Phys. Rev. B 86, 241402(R) (2012).

Jun Yan, GPAW meeting, May 22, 2013



# Exciton : solar cell applications



### Implementing the Bethe-Salpeter Equation

• TDDFT with adiabatic kernel fails to reproduce the excitonic effect



#### SUNCAT

### TDDFT with non-adiabatic kernel : bootstrap kernel

### • BSE calculation is too expensive

The kernel is supposed to have a form of  $\overline{q^2}$  where q is a wave vector and alpha is constant. The adiabatic kernel is independent of q.

 $\alpha$ 

• An approximate bootstrap kernel with TDDFT

#### Bootstrap kernel

$$f_{\rm xc}^{\rm BS}(\mathbf{q},\omega) = -\frac{\varepsilon^{-1}(\mathbf{q},\omega=0)v(\mathbf{q})}{\varepsilon_0(\mathbf{q},\omega=0)-1}$$

fxc updated self-consistently It can reproduce bulk tests very well. The performance for surfaces or 2D systems is unclear.



# RPA correlation energy



RPA correlation energy :

$$E_c^{\text{RPA}} = \int_0^\infty \frac{d\omega}{2\pi} \sum_{\mathbf{q}}^{\text{BZ}} \text{Tr} \left\{ \ln[1 - \chi^0_{\mathbf{GG}'}(\mathbf{q}, i\omega) V_{\mathbf{G}'}(\mathbf{q})] + \chi^0_{\mathbf{GG}'}(\mathbf{q}, i\omega) V_{\mathbf{G}'}(\mathbf{q}) \right\}$$

 $E = E^{\rm DFT} - E_{xc}^{\rm DFT} + E_x^{\rm EXX} + E_c^{\rm RPA}$ 

EXX + RPA total energy :

**RPA** improves:

- Lattice constants
- Surface energies
- Adsorption sites
- Adsorption energies

Despite : PBE structure, none-self-consistency, underbinds for atomization/cohesive/ adsorption energies



L. Schimka, J. Harl, A. Stroppa, A. Gruneis, M. Marsman, F. Mittendorfer, and G. Kresse, Nature Materials 9, 741 (2010) X. Ren, P. Rinke and M. Scheffler, Phys. Rev. B 80, 045402 (2009)



**SUNC**AT

SLAO



Parallelized over q, k (or bands), w and G. The parallelization over q and k (or bands) has almost 100% efficiency.

### Frequency integration





• Use imaginary frequencies

• Use Gauss-Legendre integration method

Jun Yan, GPAW meeting, May 22, 2013

32

For free electrons the non-interacting response function is known as the Lindhard function and for high energies its RPA correlation energy scales as:

$$E_c = E_c^\infty + \frac{A}{(E_{\rm cut})^{3/2}}$$



SUNCAT

#### **SUN<del>CAT</del>**

SL/



The key reason for such speed up is that using plane wave basis, the KS equation is diagonalized directly instead of solving iteratively.



### **RPA** bottlenecks

#### SUN<del>@AT</del>

Response function takes most of the time (>99.5%)

$$\chi^{0}_{\mathbf{GG}'}(\mathbf{q}, i\omega) = \frac{2}{V_{\mathrm{BZ}}} \sum_{k,nm} (f_{n\mathbf{k}} - f_{m\mathbf{k}+\mathbf{q}}) \frac{\langle \psi_{n\mathbf{k}} | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \psi_{m\mathbf{k}+\mathbf{q}} \rangle \langle \psi_{m\mathbf{k}+\mathbf{q}} | e^{i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \psi_{n\mathbf{k}} \rangle}{i\omega + \epsilon_{n\mathbf{k}} - \epsilon_{m\mathbf{k}+\mathbf{q}} + i\eta}$$

**Example** : N<sub>2</sub>/Ru(001) 2\*2\*3 slab 16 (k-point) \* 60 (occ bands) \* 3000 (unocc bands) \* 16 (w points) \* 5 (q-points) = 230,400,000 loops, which takes 80 cores for 50 hours.

For a given n, m, k, q, define density matrix :

$$n(\mathbf{G}) \equiv \langle \psi_{n\mathbf{k}} | e^{-i(\mathbf{q}+\mathbf{G})\cdot\mathbf{r}} | \psi_{m\mathbf{k}+\mathbf{q}} \rangle$$

The computing of the response functions consists of :

I. Calculate  $n(\mathbf{G})$ 

A few hundred lines of code, takes 10% of total computing time for the response function.

2. Perform  $C(i\omega)n(\mathbf{G})n^*(\mathbf{G}')$  and add to  $\chi^0_{\mathbf{GG}'}(\mathbf{q}, i\omega)$ A few lines code, takes 90% of total computing time.

16 complex matrices of size 4000×4000 : 4G memory





**SUN**CAT

Bottleneck :

$$\chi^{0}_{\mathbf{GG}'}(i\omega) = \sum_{\mathbf{k},nn'} A(i\omega)n(\mathbf{G})n^{*}(\mathbf{G}'),$$

It is calculated using zher routine in blas. Move this function to cuda using cublas gains 13x speed up.

Group multiple charge density matrices together and use zherk instead of zher routine.

$$\chi^{0}_{\mathbf{GG}'}(i\omega) = \sum_{\mathbf{k},n,u \subset n'} A(u,i\omega)n(u,\mathbf{G})n^{*}(u,\mathbf{G}'),$$

| No. | Function                          | 250            |
|-----|-----------------------------------|----------------|
| 3)  | get_wfs                           | $16.0 \times$  |
| 4)  | $transform_wfs$                   | $15.4 \times$  |
| 5)  | fft                               | $12.3 \times$  |
| 6)  | mapG                              | $53.4 \times$  |
| 7)  | paw_P_ai                          | $242.2 \times$ |
| 8)  | paw_P_ap                          | $56.7 \times$  |
| 9)  | paw_add                           | $136.2 \times$ |
| 10) | optical_limit                     | $19.2 \times$  |
| 11) | zherk                             | $26.9 \times$  |
|     | Total, $\mathbf{q} \rightarrow 0$ | 30.6×          |
|     | Total, $\mathbf{q} \neq 0$        | 39.6×          |
|     |                                   |                |

Final speed up

Special kernel for PAW terms

 $n_{n\mathbf{k},n'\mathbf{k}+\mathbf{q}}(\mathbf{G}) = \tilde{n}_{n\mathbf{k},n'\mathbf{k}+\mathbf{q}}(\mathbf{G}) + \sum_{a,ij} \langle \tilde{\psi}_{n\mathbf{k}} | \tilde{p}_i^a \rangle \langle \tilde{p}_j^a | \tilde{\psi}_{n'\mathbf{k}+\mathbf{q}} \rangle Q_{ij}^a(\mathbf{q}+\mathbf{G})$ 

6000 lines of python, 1000 lines of C/CUDA (and re-uses many GPAW functions)

Techniques:

Use BLAS3 "zherk" instead of BLAS2 "zher" Batch FFTs GPU kernels parallelized over atoms/bands/projector-functions No thunking: all calculations on GPU

| System            | Phase   | Na | $N_e$ | Spin  | k-points              | Improvement | $t_{gpu}$ |
|-------------------|---------|----|-------|-------|-----------------------|-------------|-----------|
| $O_2$             | gas     | 2  | 12    | True  | 1                     | 11.3x       | 41  sec   |
| Li <sub>2</sub> O | bulk    | 3  | 8     | False | $4 \times 4 \times 4$ | 10.5x       | 63  sec   |
| $MoO_3$           | bulk    | 16 | 96    | False | $4 \times 2 \times 4$ | 35.3x       | 1.0 h     |
| $N_2/Ru(0001)$    | surface | 14 | 202   | False | $4 \times 4 \times 1$ | 36.1x       | 1.4 h     |
| CO/Ni(111)        | surface | 22 | 210   | True  | $4\times 4\times 1$   | 37.0x       | 5.5 h     |



Jun Yan, Lin Li and Christopher O'Grady, submitted, 2013.

Jun Yan, GPAW meeting, May 22, 2013

# Enthalpy of Formation per Oxygen

#### **SUN**<sup>®</sup>**A**T

Expt

RT

-6.21<sup>a</sup> -3.28<sup>a</sup> -1.37 to -1.50<sup>b</sup> -4.33<sup>a</sup>

> -2.66<sup>a</sup> -1.35<sup>a</sup>

$$\Delta E_{\mathcal{O}} = \frac{1}{y} E(\mathbf{A}_x \mathbf{O}_y) - \frac{x}{y} E(\mathbf{A}) - \frac{1}{2} E(\mathbf{O}_2),$$

|                                                                                                                                      |                                | PBE   | EXX   | EXX+RPA          |       |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------|-------|------------------|-------|
| · Coloction of avideo                                                                                                                |                                |       |       | <sup>©</sup> PBE | T=0   |
| • Selection of oxides                                                                                                                | $Li_2O$                        | -5.35 | -5.72 | -5.69            | -6.14 |
|                                                                                                                                      | $Li_2O_2$                      | -2.80 | -2.61 | -3.05            | -     |
|                                                                                                                                      | $LiO_2$                        | -1.42 | -0.24 | -1.38            | -     |
|                                                                                                                                      | Na <sub>2</sub> O              | -3.62 | -3.38 | -3.93            | -4.28 |
| Alkali and Alkali Farth Metal Oxides                                                                                                 | Na <sub>2</sub> O <sub>2</sub> | -2.14 | -1.88 | -2.41            | -2.63 |
|                                                                                                                                      | NaO <sub>2</sub>               | -1.22 | -0.22 | -1.26            | -1.37 |
| with oxidization states                                                                                                              | $K_2O$                         | -3.07 | -2.14 | -3.54            | -     |
| O <sup>2-</sup> (oxide).                                                                                                             | $K_2O_2$                       | -2.11 | -1.55 | -2.42            | -     |
| $\mathbf{O}_{2}^{2}(\mathbf{x},\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},z$ | $KO_2$                         | -1.34 | -0.21 | -1.45            | -1.48 |
| $O_2^2$ (peroxide),                                                                                                                  | $Rb_2O$                        | -2.70 | -1.59 | -3.30            | -     |
| $O_2^{-}$ (superoxide).                                                                                                              | Rb <sub>2</sub> O <sub>2</sub> | -2.02 | -1.43 | -2.42            | -     |
| - ( 1 /                                                                                                                              | $RbO_2$                        | -1.31 | 0.12  | -1.43            | -     |
|                                                                                                                                      | $Cs_2O$                        | -3.02 | -1.42 | -3.50            | -     |
|                                                                                                                                      | $Cs_2O_2$                      | -2.08 | -1.30 | -2.47            | -     |
|                                                                                                                                      | $CsO_2$                        | -1.36 | 0.15  | -1.43            | -     |
| Iransition Metal Oxides                                                                                                              | BeO                            | -5.45 | -6.31 | -5.89            | -6.27 |
| with simple structures                                                                                                               | MgO                            | -5.57 | -6.04 | -5.94            | -6.19 |
|                                                                                                                                      |                                |       |       |                  |       |

and spin configurations

PBE values < 0.1 eV difference compared with Materials project database

| K <sub>2</sub> O | -3.07 | -2.14 | -3.54 | -     | -3.76 <sup>a</sup> |        |
|------------------|-------|-------|-------|-------|--------------------|--------|
| $K_2O_2$         | -2.11 | -1.55 | -2.42 | -     | $-2.57^{a}$        |        |
| $KO_2$           | -1.34 | -0.21 | -1.45 | -1.48 | $-1.47^{a}$        |        |
| $Rb_2O$          | -2.70 | -1.59 | -3.30 | -     | -3.51 <sup>c</sup> |        |
| $Rb_2O_2$        | -2.02 | -1.43 | -2.42 | -     | $-2.48^{\circ}$    |        |
| $RbO_2$          | -1.31 | 0.12  | -1.43 | -     | -1.45°             |        |
| $Cs_2O$          | -3.02 | -1.42 | -3.50 | -     | -3.58°             |        |
| $Cs_2O_2$        | -2.08 | -1.30 | -2.47 | -     | $-2.58^{\circ}$    |        |
| $CsO_2$          | -1.36 | 0.15  | -1.43 | -     | $-1.48^{\circ}$    |        |
| BeO              | -5.45 | -6.31 | -5.89 | -6.27 | -6.31 <sup>a</sup> |        |
| MgO              | -5.57 | -6.04 | -5.94 | -6.19 | $-6.23^{a}$        |        |
| CaO              | -6.05 | -6.10 | -6.48 | -6.55 | $-6.58^{a}$        |        |
| $CaO_2$          | -2.86 | -2.71 | -3.12 | -     | $-3.17^{\circ}$    |        |
| SrO              | -5.49 | -5.51 | -5.90 | -6.11 | -6.14 <sup>a</sup> |        |
| BaO              | -5.08 | -5.14 | -5.62 | -5.67 | $-5.68^{a}$        |        |
| $TiO_2$          | -4.59 | -5.35 | -4.79 | -4.87 | $-4.90^{a}$        |        |
| RuO <sub>2</sub> | -1.56 | -0.75 | -1.59 | -     | $-1.58^{d}$        |        |
| MAE              | 0.44  | 0.96  | 0.15  |       |                    | ha ala |
| MAE-s            | 0.21  |       | 0.10  |       |                    | Dack   |
|                  |       |       |       |       |                    |        |

### Enthalpy of Formation per Oxygen

Calculation (eV)

#### 0 ₩ PBE EXX +EXX+RPA -3 NaO<sub>2</sub> $Rb_2O_2$ LiO<sub>2</sub> $CaO_2 | K_2O_2$ BeO $RbO_2$ $Li_2O_2$ MgO $Cs_2O_2$ $\mathsf{KO}_2$ $Li_2O$ Rb<sub>2</sub>O $Na_2O_2$ $CsO_2$ -5RuO<sub>2</sub> SrO TiO<sub>2</sub> $Cs_2O$ -6 $K_2O$ BaO $Na_2O$ CaO -5 -3 -6 -2 $^{-1}$ -4 0

Experiment (eV)

Mean absolute error: PBE : 0.44 eV RPA : 0.15 eV

Jun Yan, Jens S. Hummelshøj, and Jens K. Nørskov, Phys. Rev. B 87, 075207 (2013)



#### SUNCAT

### Bulk Volumes with RPA

Two representative oxides:

- Li<sub>2</sub>O : PBE volume 16.3% smaller than Expt. one
- $Cs_2O$  : PBE volume 16.4% larger than Expt. one Other oxides : volume error -3% to 6%



RPA volume is 5 and 44 meV lower in total energy for Li<sub>2</sub>O and Cs<sub>2</sub>O, respectively

Jun Yan, Jens S. Hummelshøj, and Jens K. Nørskov, Phys. Rev. B 87, 075207 (2013)

Jun Yan, GPAW meeting, May 22, 2013



#### **SUN®AT**

#### **SUN<del>CAT</del>**

|       |      | PBE  | EXX  | RPA  | EXX+RPA | Expt. |
|-------|------|------|------|------|---------|-------|
| $O_2$ | Ours | 6.25 | 1.10 | 3.82 | 4.92    | 5.25  |
|       | Ref. | 6.24 | 1.08 | 3.82 | 4.90    |       |



### Summary

### SUN<del>CAT</del>

- **Plasmons** (easy to calculate and measure in Expt, meaningful results even when not converged)
  - Substrate effect : dynamical screening at weak interacting limit
  - Adsorbate effect : charge transfer like excitation at strong interacting limit
  - Low energy acoustic mode : predicted plasmon energies at Au and Ag surface
- **Excitons** (easy to measure, difficult to calculate and achieve k-point convergence)
  - Single layer boron nitride on graphene
- RPA correlation energy (not directly measured, robust on GPU, hard to converge for metals)
  - Benchmark formation energy of 23 metal oxides : Mean absolute error 0.44 eV (PBE) -> 0.15 eV (RPA)

### Implementations

- TDDFT with ALDA and bootstrap fxc kernel : well documented and detail tutorials, robust code
- BSE : documented, no tutorial, hard to converge with k-points
- RPA (on GPUs) : robust, difficult to converge with k-points for metals

### • Other talks

- Plasmonics with GPAW (Kristian), GW (Falco),
- Extending RPA with renormalized kernel (Thomas), Thin film solar cells (Ivano)

# Acknowledgements

#### SUNCAT



Karsten Wedel Jacobsen Kristian Sommer Thygesen Jens Jørgen Mortensen Marcin Dulak Ole Holm Nielsen Ask Hjorth Larsen Thomas Olsen Falco Hufner Mikael Kuisma Kirstan Anderson



Jens K. Nørskov Thomas Bligaard

Christopher O'Grady Lin Li

Phillippe Vandermersch (Nvidia) Lung Sheng Chiang (Nvidia)

CASE Catalysis for Sustainable Energy







# Thank you for your attention !







