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Correlation energy from ACDFT

The exact correlation energy in DFT can be written

Ec=
−1
2π∫0

1
d λ∫ d r d r ' e2

∣r−r '∣∫0

∞
d ω[χλ(r , r ' ; i ω)−χ0(r , r ' ;i ω)]
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The interacting response function can be obtained from 
TDDFT with a suitable approximation for the xc kernel:

χλ(ω)= χ0(ω)
1−[λ v+ f xc
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∞
d ω[χλ(r , r ' ; i ω)−χ0(r , r ' ;i ω)]

The interacting response function can be obtained from 
TDDFT with a suitable approximation for the xc kernel:

χλ(ω)= χ0(ω)
1−[λ v+ f xc

λ (ω)]χ0(ω)

If fxc is linear in λ, the coupling constant integration can be 
carried out:

E c=∫0

∞ d ω
2π

Tr [v(v+ f x)
−1ln [1−χ0(i ω)(v+ f x)]+v χ0(i ω)]



  

Neglecting the exchange-correlation kernel gives the 
Random Phase Approximation (RPA)

RPA Correlation energy

Ec=∫0

∞ d ω
2π

Tr [ ln [1−χ0(i ω)v ]+v χ0(i ω)]

The expression is implemented in GPAW using a plane 
wave representation for the response function 

Very easy to use... 

from gpaw.xc.rpa_correlation_energy import RPACorrelation
rpa = RPACorrelation(txt='rpa.txt')
E_c = rpa.get_rpa_correlation_energy(ecut=300) 

… but significantly more time-consuming than standard KS
calculations 



  

RPA gives an accurate description of van der Waals interactions

RPA Correlation energy

Graphene on metal surfaces

[T. Olsen and K. S. Thygesen, PRB 87 075111 (2013)]



  

Atomization energies of small 
molecules

PBE:              MEA – 9 kcal/mol = 0.39 ev
RPA@PBE:   MEA – 10 kcal/mol = 0.43 ev

mailto:RPA@PBE


  

Cohesive energies of solids

PBE:              MEA – 0.18 ev
RPA@PBE:   MEA – 0.42 ev

mailto:RPA@PBE


  

Pros and cons in RPA

The RPA correlation is combined with exact exchange
and the (first order) self-interaction error vanishes

Solves the CO puzzle. Correct order of adsorption energies 
on Pt(111)

Good description of strong static correlation



  

Pros and cons in RPA

The RPA correlation is combined with exact exchange
and the (first order) self-interaction error vanishes

RPA suffers from large self-correlation errors -  the 
correlation energy of a H atom is -0.6 eV

The atomization energies of small molecules are slightly 
worse than PBE – always underbinds

The cohesive energies of solids are worse than PBE

Solves the CO puzzle. Correct order of adsorption energies 
on Pt(111)

Good description of strong static correlation



  

Beyond RPA

It should be possible to improve RPA by including a simple 
exchange-correlation kernel in the response function:



  

Beyond RPA

It should be possible to improve RPA by including a simple 
exchange-correlation kernel in the response function:

The simplest one can think of is the adiabatic LDA kernel

Furthermore, we only include exchange since

Such an approximation worsens results significantly!
[F. Furche and T. van Voorhis, JCP 122 164106 (2005)]



  

Homogeneous Electron Gas

To see why ALDA fails one can look at the Fourier transform 
of the correlation hole for the homogeneous electron gas

ALDA is not an exact approximation for the HEG!

The locality implies slow decay at large q = trouble

r s = 1 r s = 10

[M. Lein, E. K. U. Gross and J. P. Perdew, PRB 61 13431 (2000)]

[F. Furche and T. van Voorhis, JCP 122 164106 (2005)]



  

Homogeneous Electron Gas

If we make a cutoff at q=2kF equivalent to the truncated kernel

The correlation energy becomes 
accurate over a wide range of
densities



  

Homogeneous Electron Gas

If we make a cutoff at q=2kF equivalent to the truncated kernel

The real space correlation hole is 
also much better described than in 
both RPA and pure ALDA

The correlation energy becomes 
accurate over a wide range of
densities

[T. Olsen and K. S. Thygesen, PRB 86 081103(R) (2012)]



  

rALDA

The procedure can be generalized to non-uniform systems by
Fourier transforming to real space: 

with

We can then get the kernel for inhomogeneous systems by taking

[T. Olsen and K. S. Thygesen, PRB 86 081103(R) (2012)]



  

Spin

There is not a unique way to generalize to spin-polarized systems 

f Hx
ALDA=[V +2f x

ALDA[2n↑] V
V V+2f x

ALDA [2n↓]]

For a spinpaired system it is straightforward to show that 

f Hxc=
1
4∑σσ '

f Hxc
σσ '

The ALDA Hartree-exchange kernel is 

It is clear that we cannot simply introduce cutoff on the diagonal 



  

Spin

Instead we take 

f Hx
rALDA=[V r[n↑+n↓]+2f x

rALDA [n↑+n↓] V r [n↑+n↓]
V r[n↑+n↓] V r [n↑+n↓]+2f x

rALDA[n↑+n↓]]
This breaks spin-scaling for the kernel and it cannot be regarded 
as pure exchange 

The choice is not unique! 



  

Spin

Instead we take 

f Hx
rALDA=[V r[n↑+n↓]+2f x

rALDA [n↑+n↓] V r [n↑+n↓]
V r[n↑+n↓] V r [n↑+n↓]+2f x

rALDA[n↑+n↓]]
This breaks spin-scaling for the kernel and it cannot be regarded 
as pure exchange 

The choice is not unique! 

In contrast to RPA we need to represent the full spin-response 
function – Requires a lot of memory



  

rALDA

The rALDA kernel has been implemented in GPAW

There is no general framework for PAW corrections of two-point
functions. The implementation uses all-electron density for kernel



  

rALDA

The method improves absolute correlation energies significantly
compared to RPA

Numbers are in kcal/mol = 43 meV
[T. Olsen and K. S. Thygesen, PRB 86 081103(R) (2012)]

The rALDA kernel has been implemented in GPAW

There is no general framework for PAW corrections of two-point
functions. The implementation uses all-electron density for kernel



  

rALDA - molecules

Numbers are in kcal/mol = 43 meV
[T. Olsen and K. S. Thygesen, in preparation]



  

rALDA - molecules

Numbers are in kcal/mol = 43 meV
[T. Olsen and K. S. Thygesen, in preparation]

MEA (kcal/mol)
LDA:             37
RPA@LDA:  14
RPA@PBE:   10
PBE:                9
SOSEX:           5
rALDA:           2

mailto:RPA@LDA
mailto:RPA@PBE


  

The two-point density makes the rALDA kernel non-periodic
and one has two sample all unit cells (twice) in bulk systems:

rALDA - solids

with

[T. Olsen and K. S. Thygesen, in preparation]

The two-point density cannot be stored – Implementation 
involves loop over r' and double loop over all unit cells.

Very slow for solids!



  

rALDA - solids

[T. Olsen and K. S. Thygesen, in preparation]

For semiconductors results are much better than RPA, 
but not for metals...



  

rALDA - Static Correlation

[T. Olsen and K. S. Thygesen, in preparation]

Dissociation of H2

rALDA results are similar to RPA but offset is much better



  

For van der Waals interactions the rALDA kernel gives 
results similar to RPA

rALDA – van der Waals

[T. Olsen and K. S. Thygesen, in preparation]

Bilayer graphene

We have also tested four members of the s22 set of molecular 
dimers where rALDA and RPA produce identical results



  

   Compared to RPA, the rALDA kernel significantly improves
   absolute correlation energies

   Atomization energies are significantly improved for small        
     molecules and solids

   The rALDA kernel conserves the RPA description of                
     dispersive interactions and static correlation

   The method allows for straightforward generalizations to 
    renormalized adiabatic GGAs
           - preliminary rAPBE results gives a correlation energy      

               for H < 1 meV

   Include correlation part of the adiabatic kernel

Summary and Outlook
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