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Outline:
Problems with GGA approximation (PBE, RPBE, ...)
Orbital density dependent (ODD) functionals:
In particular Perdew-Zunger self-interaction correction,;
CPU time can scale as for DFT/GGA,
Codes: Quantice (Gaussian orbitals),
GPAW

Application to atoms, molecules and solids




Electronic Structure Calculations

Wave function based Methods

CI,
CC, CAS-PT2

e

Multi-Configuration HF

Hartree-Fock (HF)
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Exact solution obtained in
principle, but effort scales ~ N7.
Good for small systems (N<30)

DFT and beyond

?7?

Improved accuracy needed,
keeping scaling of effort low
(~ N3 for GGA which can be
applied to large systems even
N~1000)



Hartree-Fock approximation

Each electron is subject to the average interaction
with the other electrons — a mean field approximation

o = Wavefunction WV is a Slater determinant of orbitals

@ Ground state is the set of orbitals that minimizes the energy
of the Schrodinger equation.

@ Electron-electron energy contributions:
Ey: Coulomb interaction of the electron density (positive)

Ex: Exchange energy, interaction of electrons of same spin
(negative)
EHF = Exin + Eext + EH + EX

@ The effective Schrodinger equation is given by
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Hartree-Fock calculations of atoms

Compare energy per electron

with high level estimate of total
energy ,Eref, by Chakravorty &
Davidson, JPC 100, 6167 (1996).
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But, HOMO energy agrees
quite well with experimental
lonization energy (Koopman).

Orbital energies correspond
remarkably well will

photo electron spectra
(‘orbitals are real’ ???).




KS-DFT (cont.)
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LDA worse than HF,

but GGA (the PBE functional)
which includes gradients

IS more accurate than HF.
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But, KS-DFT orbital
energies are

not good estimates of
lonization energy

PBEO hybrid functional
again only marginally
better than PBE
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DFT/GGA and LDA calculations have several shortcomings

electron distribution: orbital energy / band structure:

underestimated
ionization potentials
and

transition energy / reaction paths: band-gaps

activation energy
underestimated
orbital shape / chemical bonds

orbitals are %ell-defined

molecular geometry / crystal structure (post-pro’m& natural nnier ...
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Functional Approximations — Qualitative Errors

bond energy
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e.g.. Cohen, Mori-Sanchez, Yang, Chem.
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Functional Approximations — Qualitative Errors

alkynyl radical structure

H—C=—C- y—C==C¢

experiment, PBEQ PBE

Oyeyemi, Keith, Pavone, Carter, JPCL 3, 289 (2012)



Examples of problems with GGA:

(ALSI)O, system: Al substitutional defect 1n silica

Experiment: Structural symmetry breaking; spin density strongly localized on a
single O atom; corresponding bond is longer than the bonds with three other O atoms.

PBE calculation Cluster calculation in Hartree-Fock

Too delocalized spin density Properly localized spin density
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Leegsgaard & Stokbro, PRL (2001)



Kohn-Sham density functional theory (KS-DFT)

Correlation can be included by Density Functional Theory (DFT):

@ Exact ground state energy of an electronic system is obtained
from the electron density p by a density functional E[{y;}

@ Evaluation of this functional is as complicated as solving the
Schroedinger equation, but approximations can be used

@ Kohn-Sham DFT uses orbitals to estimate the kinetic energy;
exchange and correlation are obtained from p approximately
by an exchange-correlation functional E,.[p(r)]
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Can a functional lead to more meaningful orbitals
and give better description of defect states?

If orbitals are meaningful representations of electrons, then orbital densities
should give an estimate of electron probability distribution,
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HF: Coulomb self-interaction compensated by equivalent term in exchange
DFT: Incomplete cancellation due to (semi)-local approximation of exchange



Self-Interaction Error for a single electron

Energy of a single electron has no electron-electron contributions!

E[p'] = V[p']+ Tlp'] + Eulpl] + Edlp'] + Ec[pt] = V[p'] + T:[p']
——
=0

Exact exchange-correlation functional:

o] = —Eulp]
ngact[ﬂl] == 1)

Approximate functionals =- Self-Interaction energy:
E>p"] = EXP"[p"] + Enp'] # 0

Correction:
Ee:r.act[lﬂl] — [3PPr- [F:"l] . EEI [Iﬂll



Back to Hz+

bond energy

H+H

0 HH2

bond energy

H+H

PBE+SIC
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Perdew-Zunger Self-Interaction Correction (SIC)

Correct both Coulomb and E, orbital by orbital (79871)
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Orbital based estimate of self-interaction energy

Compare computational ' ~N
cost with that of hybrids
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In principle, PZ-SIC scales as N3, same as GGA and LDA,



But, how good is PZ-SIC?
Calculate the Energy of atoms

when real expansion coefficients are used in the orbitals:
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% SIC-PBE ... improves total energy for Z < 7
... but, for Z = 7 the total energy estimate becomes worse !!!
* consistent with results reported by Vydrov and Scuseria, JCP 121 (2004).



Test SIC in atoms, (cont.)

Rather, use complex expansion coefficients
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% SIC-PBE ... improves total energies for all studied atoms
* ... error reduced to about 0.15 eV / electron

uétionals requires complex orbitals
(see S. Klupfel, P. Kltpfel and HJ, Phys.Rev.A (RC) 84, 050501 (2011))



lonization potentials of atoms

Obtained from the highest occupied orbital (HOMO)
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% PBE has ~40% errors
% PBEO (hybrid) gives some, but small improvement, error remains ~30%
¥ S|C-PBE has errors of ~5%,

can give good estimates of orbital energies,
also for deeper ionization (HOMO-1, HOMO-2, ...)




Bond energy of diatomics

The SIC strongly affects the binding energy of molecules

Also here, real and complex orbitals can give significantly
different values

Eh[EV] Hg Ng ':'g
exp. 473 093 5.25
LDA 491 11.62 7.61

LDA-SIC  real 497 1055 552
cmpl. 497 1094 5.82
PBE 454 1058 6.26
PBE-SIC real 446 950 419
cmpl. 446 989 4.71




Molecules: Atomization Energy

Studied molecules:

H,, LiH, Li,, LiF, HF, N,, O,, F,, P,, CO, NO, CO,, CH,, NH,, H,0, C,H,, CH,

Atomization energy:
E*'™(A-B) = [E(A) + E(B)] — E(A-B)

Error:
ﬂEatm(A‘-B} — Eatm _ Eatm

calc. ref.

best estimates E2™:

Mean error: ME = %ZﬂEatm(f]
i

Mean absolute error: MAE = %Z |AE*™(i)|

i 1.5
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Kluepfel, Kluepfel and Jénsson, -10
JCP 137, 124102 (2012) A5

Experiment corrected for zero-point energy
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Scaled Self-Interaction Correction

Scaled Perdew-Zunger SIC:
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Bylaska, Tsemekhman, Jénsson, APS March Meeting abstract (2004)
Viydrov, Scuseria, Perdew, Ruzsinszky, Csonka, JCP 124, 094108 (2006)



Molecules: Atomization Energy
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Kluepfel, Kluepfel and Jonsson, JCP 137, 124102 (2012)



Molecular Radicals: C,H

C,H

20 -\ pBE:sIC2

E(c) - E(180°) (meV)
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Kluepfel, Kluepfel and Jonsson, JCP 137, 124102 (2012)



Molecular geometry can become wrong when SIC is applied
with real orbitals, resolved when complex orbitals are used

PBE+SIC — real orbitals PBE+SIC — complex orbitals
H H
c*® *
z ¢
H H

Kluepfel, Kluepfel and Jonsson, JCP 137, 124102 (2012)



Apply to defects in oxides: Electron hole in quartz with Al

The DFT-SIC/2 correctly gives localized spin density
and only one of the Al-O bonds is lengthened (by 0.3 A).

Compare with EPR measurements, hyperfine constants:

A: 032 018 050 PBE-SIC?2
03 04 07 Bxp

S: 8 40 40 PBESICR2
85 41 M4 B



Application to excited states of large molecules

With SIC, the right 1/r dependence of the long range potential is built in,
get the right Rydberg series of unoccupied states. Use solid-state approach to
excited states of molecules, DFT-SIC energy functional, OEP for virtual.

0
[’
4
-0.5¢ ' 1
1
]
I
-1t 1 |
1
||
i

PW91 T
PW91-SIC|

Potential [a.u.]
|
(6]

—20 —1b r[a?.u.] 1I0 20
_ _ _ Test: NH3
3p,, orbital of trimethylamine Oorb. Exp. Calc.
Collaboration with 3s  6.392 6.391
Peter Weber at Brown 3p,, 7.927 7.946
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Minimization of ODD Energy Functionals

minimization under constrained orthonormalization of the orbitals:

Slled] = Ellgd) - 3 g ([ iwes - 5)

17=1

condition for { 9] L) =S S| L0 X = N\

minimal energy 2 p*(r =1

KS-DFT: p[p] = v[p](r) HF: d[p] = d[p(r,1')]

Unitary mvarlance

ZU@J% ) = p=p, Elp] = Elp|, 0]p|] = 0[p]

Constralnt matrlx always Hermitian: A=\
Ch iIcal orbitals,
oose canonical orbitals N — UTeU € = €05
Effdegandettddinger equation, A ~ ~
inger eq { }%(I‘) = €;pi(r)

eigenvalue problem: —5 T 0lp]




Minimization of PZ-SIC energy functional

Hipi) = | 0= 30

Energy/potential is not unitary invariant
Localized orbitals give larger SIC than delocalized orbitals

The equations for the orbitals are coupled
cannot choose orbitals to diagonalize \

Hamiltonian depends on orbital index

— LDA
—— SIC-LDA (Goedecker Umrigar
—— SIC-LDA (Unitary Op )

This is in contrast to Kohn-Sham and HF
where the set of equations can be reduced to
several one-electron eigen value problems.

wavefunction residual [Ha)
S

10

01 2 3 4 5 6 7 8 9 10N
iteration / M, (LDA)

The lack of unitary invariance represents a problem in the minimization.
But, a set of unique orbitals is obtained, possibly more meaningful than MOs.



Unitary Optimization

Gradient
S ——
k= 2(A — Af)
r * b
D

Hni::####,f¢
‘W = W(1+6D)]
}
w = o(w")

arthonormalization

Search Direction

geodesic

[ W = W exp(dD) ]




Minimization of ODD functionals




Orbital Density Dependent (ODD) Functionals

Pros:

v scaling of CPU time same as GGA

v localized electronic states not penalized
v improved total/single-particle energy

v can give meaningful orbitals directly

cons:

X inefficient minimization (not eigen value problem)
X several local minima

Progress:. Improved minimization procedure:
P. Klupfel, S. Klupfel, K. Tsemekhman and HJ,
Lecture Notes In Computer Science (2012)).

Stage set for the development of an optimal ODD functional!



Summary

- PBE-SIC (or, better, PW91-SIC) is an alternative to
hybrid functionals such as PBEO giving better estimate of
total energy of atoms and ionization potentials.

- Complex wave functions have to be used in
self-consistent minimization of ODD functionals.

- Orbital-Density-Dependent functionals can give
meaningful, well-defined, localized orbitals
and this extended functional form opens the possibility for
higher accuracy (defect states, band gaps, bond energy...)
at computational cost that scales with N as DFT/GGA.

- Further development of ODD:
Construct new exchange correlation functional consistent
with self-interaction free Hartree energy (need new PAW projectors).
Need to ensure size consistency, especially for solid state applications.
Improve the minimization algorithm (get stuck in local minima, large
systems don't converge ...)
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