Challenges with the currently (correctly) implemented NEB-method. Should ASE revert to the original more robust NEB-formulation with springs?

Bjørk Hammer
Aarhus University, Denmark

- **Motivation**: often seen that finding saddle points with ASE is challenging.
- **Objective**: assure easy and simple access to saddle point search with ASE
- **Means**:
 - Illustrate pit-falls of current NEB implementation
 - Illustrate robustness of old NEB implementation
Challenges with the currently (correctly)

• **Motivation**: often seen that finding saddle points with ASE is challenging.
• **Objective**: assure easy and simple access to saddle point search with ASE
• **Means:**
 • Illustrate pit-falls of current NEB implementation
 • Illustrate robustness of old NEB implementation
Activity of fully oxygen covered stepped metal surfaces

Z. Sljivancanin and BH, Phys Rev B 81, 121413(R) (2010)
Ethanol dissociation

Model system: Initial configuration
Model system: Final configuration
Success 1: Linear interpolation, many images
Success 1: standard ASE-NEB, many images
More typical: Few images.
After some iterations: a local minimum

25 iterations
After some iterations: a local minimum
Identifying the local minimum along the path
Identifying the local minimum along the path
Success 2: Climbing NEB
Success 2: Climbing NEB
Failure 1: Continued NEB
Failure 1: Two new local minima
Failure 1: Two new local minima
Failure 1: Finding the first local minimum
Failure 1: Finding the first local minimum
Failure 1: Finding the 2nd local minimum
Failure 1: Finding the 2nd local minimum
Failure 1: NEB between new minima
Failure 1: NEB between new minima
Failure 1: NEB between new minima
Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points

Graeme Henkelmana) and Hannes Jónssonb)
Department of Chemistry, Box 351700, University of Washington

\[\tau_i = \begin{cases}
\tau_i^+ & \text{if } V_{i+1} > V_i > V_{i-1} \\
\tau_i^- & \text{if } V_{i+1} < V_i < V_{i-1}
\end{cases} \]

where

\[\tau_i^+ = R_{i+1} - R_i, \quad \text{and} \quad \tau_i^- = R_i - R_{i-1}, \]

\[F_i^s = k \left[(R_{i+1} - R_i) - (R_i - R_{i-1}) \right] \cdot \hat{\tau}_i \]

\[F_i^s = k (|R_{i+1} - R_i| - |R_i - R_{i-1}|) \hat{\tau}_i \]
ASE version / neb.py code

```python
imax = 1 + np.argsort(energies)[-1]
self.emax = energies[imax - 1]

tangent1 = images[1].get_positions() - images[0].get_positions()
for i in range(1, self.nimages - 1):
    tangent2 = (images[i + 1].get_positions() - images[i].get_positions())
    if i < imax:
        tangent = tangent2
    elif i > imax:
        tangent = tangent1
    else:
        tangent = tangent1 + tangent2

    tt = np.vdot(tangent, tangent)
    f = forces[i - 1]
    ft = np.vdot(f, tangent)
    if i == imax and self.climb:
        f = 2 * ft / tt * tangent
    else:
        f = ft / tt * tangent
    f = np.vdot(tangent1 * self.k[i - 1] -
               tangent2 * self.k[i], tangent) / tt * tangent

tangent1 = tangent2
```

\[\mathbf{F}_i \| = k[(\mathbf{R}_{i+1} - \mathbf{R}_i) - (\mathbf{R}_i - \mathbf{R}_{i-1})] \cdot \hat{\mathbf{r}}_i \hat{\mathbf{r}}_i \]
Solution: spring-NEB
Solution: spring-NEB + climbing-NEB
Solution: spring-NEB + climbing-NEB
Challenges with the currently (correctly) implemented NEB-method. Should ASE revert to the original more robust NEB-formulation with springs?

- **Observation:** finding saddle points with ASE is challenging.

- **Problem:** images may drift apart with:

 \[F_i^S = k (|R_{i+1} - R_i| - |R_i - R_{i-1}|) \hat{\tau}_i \]

- **Solution:** reintroduce springs?