Automated Two Step Structure Prediction within GPAW

Lasse B. Vilhelmsen and Bjørk Hammer

Why We Need Automated Methods

J. Wang and B. Hammer, Top. Catal. 44, 49 (2007)

H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, and U. Landman, Angew. Chem. 42, 1297 (2003).

A. Sanchez et al., J. Phys. Chem. A 103, 9573 (1999).

- A method for finding global minima
- Follows a Darwinian evolution scheme
- Based on physical intuition and no formal convergence criteria

Generate random start population

Encountered Au₈ structures

Au₈ Structures

LB Vilhelmsen and Bjørk Hammer, PRL 108, 126101 (2012)

Two Step Optimization Technique

Two Step Optimization Technique

Au, Pd and Au/Pd in MOF-74

The Challenge of Testing

A GA run includes many random factors

Only multiple runs can test the performance

The System To Test With

Density Functional Tight Binding calculations (DFTB)

Ti₆O₁₂ cluster

10.000 random configurations only come within 0.66 eV of the best configuration

Distribution of Attempts

Importance of Population Size

AARHUS UNIVERSITE

Should We Use Mutations?

Conclucions

- Energies and forces correlate well between the LCAO and FD bases
- The GA is highly successful in predicting structures across many different system types

Using fast methods one can investigate
the GA performance

Acknowledgements

Successes

Vilhelmsen, L.B. et al. JACS, 2012 Vilhelmsen, L.B. et al. JPCL, 2012

Bechstein, R. et al., PRL 2012 Martinez, U., et al., PRB 2011

AARHUS UNIVERSITE

Similiarity Criteria

 $\Delta E_i = 0.7 \text{meV}$ $d_{\text{max,i}} = 1.026 \text{\AA}$

 $d_{rel,i} = 0.002$

Energy criteria:

$$d_i = |E_j - E_i| > \Delta E$$
 for all E_j

Structural criteria: $d_{rel,i} = \frac{\sum_{k} |D_i(k) - D_j(k)|}{\sum_{k} D_i(k)} < d_{rel}$ and $d_{max,i} = max(|D_i - D_j|) < d_{max}$

