
Samuli Hakala
COMP Centre of Excellence

Department of Applied Physics
 Aalto University School of Science

Email: samuli.hakala@aalto.fi
GPAW Workshop, May 2013

mailto:samuli.hakala@aalto.fi

Background

Overview

Collaborators:

1.

Methods 2.

Results 3.

Summary 4.

Ville Havu, Jussi Enkovaara and Risto Nieminen @ Aalto University
Christopher O’Grady, Lin Li, Jun Yan @ SUNCAT Center in
Stanford/SLAC

 Large caches

 Sophisticated control

 Powerful ALU

 Reduced operation latency

 Small caches
 Simple control
 Energy efficient ALUs

 Many, long latency but heavily
pipelined for high throughput

 Require massive number of
threads to tolerate latencies

Porting to GPUs
 Identify numerical bottlenecs on CPU and replace them with GPU equivalents.

 Minimize memory transfers between host and devive.

 Usually attaining good performance requires also porting a lot of non-intensive
routines.

 Performance:

 GPU: Nvidia Tesla M2070 (DP 515 Gflops. Mem bw: 150GB/s) Tesla K20
(DP 1170 Gflops. Mem bw: 208GB/s)

 CPU: Intel Xeon X5650 (DP 10.664 Gflops per core. Total: 64 Gflops. Mem
bw: 32GB/s)

 Theoretically GPU 18 times faster and has 6.5 times the bandwidth!

GPAW GPU Implementation
 GPAW coded in Python with extensions written in C for performance

critical parts.

 Goal for GPU implementation: High level algorithms and code stay
same. Change only low level routines

 NumPy toolkit is used to perform operations on Python using
multidimensional arrays.

 Standard libraries are used for linear algebra operations (BLAS,
LAPACK, SCALAPACK)

 Use PyCUDA toolkit, NVIDIA CuBLAS library and several custom
CUDA kernels.

 Double precision arithmetic

Initial guess for
𝜓𝑛, 𝜌

Construct the
Hamiltonian H

Subspace
Diagonalize 𝜓𝑛

Calculate
Residuals and

Update 𝜓𝑛

Orthonormalize
𝜓𝑛

Check
Convergence

Update and Mix
Densities ρ

Ground state solution in GPAW
 An iterative procedure called Self-

Consistent Field (SCF) calculation
 Most computationally intensive

parts: Construction of the
Hamiltonian, subspace
diagonalization, refining of of
wavefunctions and
ortrhonormalization.

 Uniform real space grids
 A coarse grid is used for the wave

functions and a fine grid for
potentials and densities

Constructing the Hamiltonian
 The most time-consuming parts are the calculation of the Hartree and

the exchange-correlation potentials

 Hartree potential is solved from the Poisson equation

 Done for a fine grid using a multi-grid solver

 Basic operations are: finite difference stencils for the Laplace operator
and restriction and interpolation between coarser and finer grids

 Custom CUDA kernels for all of these operations

 Solved entirely on GPUs

 Speed-ups between 10-20 on a single GPU

LibXC on GPUs
 A reusable library of >250 exchange-

correlation functionals
 Used by 15 different codes (Abinit,

GPAW, BigDFT, etc.)
 Can be a performance bottleneck for

small systems
 Can “clone” existing functionals for GPU

use with fairly minimal changes to
existing LibXC code and parallelizes
well over grid points

 More information:
 https://confluence.slac.stanford.edu/d

isplay/SUNCAT/libxc+on+GPUs

 Work by Lin Li, Jun Yan, Christopher
O’Grady (Stanford/SLAC)

Functional Type Speedup
((GPU+CPU)/CPU)

PW, PW Mode,
OB PW, PW
RPA

LDA
Correlation

23,23,23,37

PBE, PBE sol,
xPBE, PBE JRGX,
RGE2, APBE

GGA
Correlation

56, 58, 58,
58, 58, 58

RPBE GGA
Exchange

95

TPSS MGGA
Exchange

51

https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs

Updating the Wave functions
 Eigensolver: Residual minimization scheme - direct inversion in the iterative subspace

(RMM-DIIS)

 Wave functions are updated with the residuals 𝑅𝑛𝐺 = 𝐻 − 𝜖𝑛𝑆 𝜓 𝑛𝐺

 Accelerated using preconditioned residuals by solving approximately a Poisson equation
with a multigrid method

 Explicit subspace diagonalization and orthonormalization required
 Subspace diagonalization: Hamiltonian is applied to the wave functions. The resulting matrix

then diagonalized and multiplied by the wave-functions.

 Orthonormalization: Overlap matrix is constructed by applying an ovelap operator. This is then
Cholesky decomposed and multiplied with the wave functions.

 Integrals of projector functions multiplied by wave functions and addition of projector functions
multiplied by a matrix to the wave functions

 Avoid large memory transfers:
 All wave functions are stored in GPU memory

 All operations performed using GPU

Stencil Operations
 Process the grid slice-by-slice
 Calculations perfomed using combination of registers and

shared memory
 Parallelized over grid points
 Supports real, complex and periodic grids
 Speed-ups on large grids with Fermi 27-54x and with

Kepler 37-103x

0

500

1000

1500

2000

2500

0 100 200 300

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

3rd Order FD Kernel

Xeon X5650

Fermi M2070

Tesla K20c

40x 47x

0

2000

4000

6000

8000

10000

0 50 100 150

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

Interpolation Kernel

Xeon X5650

Fermi M2070

Kepler K20c

54x 103x

0

200

400

600

800

1000

1200

0 100 200 300

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

Restriction Kernel

Xeon X5650

Fermi M2070

Kepler K20c

30x 44x

0

500

1000

1500

2000

0 100 200 300

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

Jacobi Relaxation Kernel

Xeon X5650

Fermi M2070

Kepler K20c

27x 37x

Batching on GPU

0

500

1000

1500

2000

2500

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

3rd Order FD Kernel

30x M2070
60x M2070
30x K20c
60x K20c

0

2000

4000

6000

8000

10000

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

Interpolation Kernel

30x M2070
60x M2070
30x K20c
60x K20c

0

200

400

600

800

1000

1200

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

Restriction Kernel

30x M2070
60x M2070
30x K20c
60x K20c

0

2000

4000

6000

8000

10000

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

BLAS1 dotu Kernel

30x M2070
60x M2070
30x K20c
60x K20c

 Small grids cause performance issues

 Block of grids using one kernel

 Used in stencil operations and in several BLAS functions

 Can increase performance up to 10 times on a 30x30x30
grid and up to 5 times on a 60x60x60 grid

Getting and Building GPU GPAW
 Libraries needed: Libxc (2.0.0 or newer), CUDA Toolkit, PyCUDA 2012.1
 Get the CUDA branch:

svn co https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda

 In the gpaw/c/cuda directory:
 edit make.inc for correct library/include directories
 run make

 Add to customize.py:
 define_macros += [('GPAW_CUDA', '1')]

 Add libraries: gpaw-cuda, cublas, cuda, xc

 Continue with normal installation
 Most of the tests test suite should pass successfully

https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda
https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda

Using GPU GPAW
 Using CUDA in calculations:
gpaw-python --cuda Au224.py

 Or pass cuda parameter to GPAW calculator:
calc = GPAW(... , cuda=True , ...)

 Additional command line arguments:

 --debug-cuda
Performs same operations with GPU and CPU and compares results

 --cuda-sync
Synchronizes CUDA context with GPAW timers

Ground State Performance
Bulk Silicon Fullerene
 95 atoms with periodic boundary conditions,

380 bands and 1 k-points. Complex grid size:
56x56x80.

 Time is in seconds per one SCF iteration.

 Intel Xeon X5650, NVIDIA Tesla M2070

 C60 molecule with 240 valence electrons. Grid
size: 80x80x84

 Intel Xeon X5650, NVIDIA Tesla M2070

 Si95 CPU GPU % S-Up

Poisson Solver 2.1 0.12 0.5% 17

Orthonormalization 60 5.0 23% 12

Precondition 19 1.5 6.6% 12

RMM-DIIS other 48 4.7 22% 10

Subspace Diag 84 5.6 25% 14

Other 4.5 5.1 23% 0.8

Total (SCF-Iter) 217 22 9.8

C60 CPU GPU % S-Up

12 0.64 7.6% 19

10 0.95 11% 11

17 0.93 11% 18

7.2 0.58 7% 12

21 1.8 22% 11
3.6 3.5 41% 1.1
71 8.4 8.5

Multi-GPU Parallelization
 Parallelization is done with MPI
 Multiple GPUs can be used by domain decomposition or

parallelization over k-points or spins
 Domain decomposition for the stencil operations involves exchanging

boundary regions between neighboring nodes
 Communications between nodes require data movement: device

memory → host memory → destinations node host memory →
destinations node device memory.

 Overlaps receives, sends and computations in the middle part of the
grid, BUT this causes issues with small grids
 Small grids: Synchronous transfers
 Medium grids: Asynchronous transfers
 Large grids: Overlap calculations and asynchronous transfers
 Combine of several wave functions and boundary regions into few large

transfers

GPU1 GPU2

GPU3 GPU4

Using MPI
 MPI works automatically:
mpirun -np 4 gpaw-python --cuda Au224.py

 GPU card selected based on MPI rank

 One-to-One mapping between GPU cards, CPU cores and MPI tasks is
assumed

 Supports CUDA aware MPI implementations (mvapcih2, openmpi)

 Needs CUDA_MPI definition in customize.py and make.inc

 GPUDirect

Weak Scalability (Carbon)
 The size of a carbon nanotube

and the number of MPI tasks
are varied from 80 atoms (240
states) to 320 atoms (1280
states) and 1 task to 12 tasks.

 Comparison between equal
number of GPUs and CPU
cores.

 CPU: Intel Xeon X5650 GPU:
NVIDIA Tesla M2070

 Calculations performed on
Vuori cluster at CSC

Strong Scalability
 Bulk silicon with 1151 atoms

with periodic boundary
conditions, 4604 bands and 1 k-
point in the Brillouin zone.

 The number of GPUs is
increased from 64 to 256.

 Grid size: 164x164x108

 Speed-up comparison to 64
GPUs.

 NVIDIA Tesla M2090

 Calculations performed on
CURIE cluster in France at
GENCI/CEA

Weak Scalability (Silicon)
 The size of bulk silicon system and the number of MPI tasks are varied from 383 atoms (1532

bands) to 2046 atoms (8188 bands) and 8 task to 256 tasks with periodic boundary conditions.
 The largest system requires about 1.3TB of memory for calculations.
 CPU: Intel Xeon E5640 GPU: NVIDIA Tesla M2090

Summary
 We have accelerated the most numerically intensive parts of ground

state DFT calculations
 Overall speed-ups in our tests varied from 8.5 to 19 depending on

system size.
 Our multi-GPU implementation scales well even on large hybrid

clusters.
 Code is available at GPAW Subversion repository.
 Acknowledgements to CSC and PRACE for computing resources

Hakala S., Havu V., Enkovaara J., Nieminen R. M. ”Parallel Electronic Structure
Calculations Using Multiple Graphics Processing Units (GPUs)” In: Manninen,
P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 63--76. Springer, Heidelberg
(2013)

