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 Large caches 

 Sophisticated control 

 Powerful ALU 

 Reduced operation latency  

 Small caches 
 Simple control 
 Energy efficient ALUs 

 Many, long latency but heavily 
pipelined for high throughput 

 Require massive number of 
threads to tolerate latencies  
 



Porting to GPUs 
 Identify numerical bottlenecs on CPU and replace them with GPU equivalents. 

 Minimize memory transfers between host and devive. 

 Usually attaining good performance requires also porting a lot of non-intensive 
routines. 

 Performance: 

 GPU:  Nvidia Tesla M2070 (DP  515 Gflops. Mem bw: 150GB/s)  Tesla K20 
(DP 1170 Gflops. Mem bw: 208GB/s) 

 CPU: Intel Xeon X5650 (DP 10.664 Gflops per core. Total: 64 Gflops. Mem 
bw: 32GB/s) 

 Theoretically GPU 18 times faster and has 6.5 times the bandwidth! 



GPAW GPU Implementation 
 GPAW coded in Python with extensions written in C for performance 

critical parts. 

 Goal for GPU implementation: High level algorithms and code stay 
same. Change only low level routines 

 NumPy toolkit is used to perform operations on Python using 
multidimensional arrays. 

 Standard libraries are used for linear algebra operations (BLAS, 
LAPACK, SCALAPACK) 

 Use PyCUDA toolkit, NVIDIA CuBLAS library and several custom 
CUDA kernels. 

 Double precision arithmetic 
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Ground state solution in GPAW 
 An iterative procedure called Self-

Consistent Field (SCF) calculation 
 Most computationally intensive 

parts: Construction of the 
Hamiltonian, subspace 
diagonalization, refining of of 
wavefunctions and 
ortrhonormalization. 

 Uniform real space grids   
 A coarse grid is used for the wave 

functions and a fine grid for 
potentials and densities 
 



Constructing the Hamiltonian 
 The most time-consuming parts are the calculation of the Hartree and 

the exchange-correlation potentials 

 Hartree potential is solved from the Poisson equation 

 Done for a fine grid using a multi-grid solver 

 Basic operations are: finite difference stencils for the Laplace operator 
and restriction and interpolation between coarser and finer grids 

 Custom CUDA kernels for all of these operations 

 Solved entirely on GPUs 

 Speed-ups between 10-20 on a single GPU 

 



LibXC on GPUs 
 A reusable library of >250 exchange-

correlation functionals 
 Used by 15 different codes (Abinit, 

GPAW, BigDFT, etc.) 
 Can be a performance bottleneck for 

small systems 
 Can “clone” existing functionals for GPU 

use with fairly minimal changes to 
existing LibXC code  and parallelizes 
well over grid points 

 More information: 
 https://confluence.slac.stanford.edu/d

isplay/SUNCAT/libxc+on+GPUs 

 Work by Lin Li, Jun Yan, Christopher 
O’Grady (Stanford/SLAC) 
 

Functional Type Speedup 
((GPU+CPU)/CPU) 

PW, PW Mode, 
OB PW, PW 
RPA 

LDA 
Correlation 

23,23,23,37 

PBE, PBE sol, 
xPBE, PBE JRGX, 
RGE2, APBE 

GGA 
Correlation 

56, 58, 58, 
58, 58, 58 

RPBE GGA 
Exchange 

95 

TPSS MGGA 
Exchange 

51 

https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs


Updating the Wave functions 
 Eigensolver: Residual minimization scheme - direct inversion in the iterative subspace 

(RMM-DIIS) 

 Wave functions are updated with the residuals 𝑅𝑛𝐺 = 𝐻 − 𝜖𝑛𝑆 𝜓 𝑛𝐺 

 Accelerated using preconditioned residuals by solving approximately a Poisson equation 
with a multigrid method 

 Explicit subspace diagonalization and orthonormalization required 
 Subspace diagonalization: Hamiltonian is applied to the wave functions. The resulting matrix 

then diagonalized  and multiplied by the wave-functions. 

 Orthonormalization: Overlap matrix is constructed by applying an ovelap operator. This is then 
Cholesky decomposed and multiplied with the wave functions. 

 Integrals of projector functions multiplied by wave functions and addition of projector functions 
multiplied by a matrix to the wave functions 

 Avoid large memory transfers: 
 All wave functions are stored in GPU memory 

 All operations performed using GPU 

 

 

 



Stencil Operations 
 Process the grid slice-by-slice 
 Calculations perfomed using combination of registers and 

shared memory 
 Parallelized over grid points 
 Supports real, complex and periodic grids  
 Speed-ups on large grids with Fermi 27-54x and  with 

Kepler  37-103x 
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Batching on GPU 
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 Small grids cause performance issues 

 Block of grids using one kernel 

 Used in stencil operations and in several BLAS functions 

 Can increase performance up to 10 times on a 30x30x30 
grid and up to 5 times on a 60x60x60 grid 



Getting and Building GPU GPAW 
 Libraries needed: Libxc (2.0.0 or newer), CUDA Toolkit, PyCUDA  2012.1  
 Get the CUDA branch:  

svn co https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda 

 In the gpaw/c/cuda directory: 
 edit make.inc for correct library/include directories 
 run make 

 Add to customize.py: 
 define_macros += [('GPAW_CUDA', '1')] 

 Add libraries: gpaw-cuda, cublas, cuda, xc 

 Continue with normal installation 
 Most of the tests test suite should pass successfully 

https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda
https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda


Using GPU GPAW 
 Using CUDA in calculations:  
gpaw-python --cuda Au224.py 

 Or pass cuda parameter to GPAW calculator:  
calc = GPAW( ... , cuda=True , ... ) 

 Additional command line arguments: 

 --debug-cuda  
Performs same operations with GPU and CPU and compares results 

 --cuda-sync  
Synchronizes CUDA context with GPAW timers 



Ground State Performance 
Bulk Silicon Fullerene 
 95 atoms  with periodic boundary conditions, 

380 bands and 1 k-points. Complex grid size: 
56x56x80.  

 Time is in seconds per one SCF iteration. 

 Intel Xeon X5650, NVIDIA Tesla M2070 

 C60 molecule with 240 valence electrons. Grid 
size: 80x80x84 

 Intel Xeon X5650, NVIDIA Tesla M2070 

 

 Si95 CPU GPU % S-Up 

Poisson Solver 2.1 0.12 0.5% 17 

Orthonormalization 60 5.0 23% 12 

Precondition 19 1.5 6.6% 12 

RMM-DIIS other 48 4.7 22% 10 

Subspace Diag 84 5.6 25% 14 

Other 4.5 5.1 23% 0.8 

Total (SCF-Iter)  217 22 9.8 

C60 CPU GPU % S-Up 

12 0.64 7.6% 19 

10 0.95 11% 11 

17 0.93 11% 18 

7.2 0.58 7% 12 

21 1.8 22% 11 
3.6 3.5 41% 1.1 
71 8.4 8.5 



Multi-GPU Parallelization 
 Parallelization is done with MPI 
 Multiple GPUs can be used by domain decomposition or 

parallelization over k-points  or spins  
 Domain decomposition for the stencil operations involves exchanging 

boundary regions between neighboring nodes 
 Communications between nodes require data movement:  device 

memory → host memory →  destinations node host memory → 
destinations node  device memory. 

 Overlaps receives, sends and computations in the middle part of the 
grid, BUT this causes issues with small grids 
 Small grids: Synchronous transfers 
 Medium grids: Asynchronous transfers 
 Large grids:  Overlap calculations and asynchronous transfers 
 Combine of several wave functions and boundary regions into few large 

transfers 

 

GPU1 GPU2 

GPU3 GPU4 



Using MPI 
 MPI works automatically:   
mpirun -np 4 gpaw-python --cuda Au224.py 

 GPU card selected based on MPI rank 

 One-to-One mapping between GPU cards, CPU cores and MPI tasks is 
assumed 

 Supports CUDA aware MPI implementations (mvapcih2, openmpi) 

 Needs CUDA_MPI definition in customize.py and make.inc 

 GPUDirect 

 



Weak Scalability (Carbon) 
 The size of a carbon nanotube 

and the number of MPI tasks 
are varied from 80 atoms (240 
states) to 320 atoms (1280 
states) and 1 task to 12 tasks. 

 Comparison between equal 
number of GPUs and CPU 
cores.  

 CPU: Intel Xeon X5650  GPU:  
NVIDIA Tesla M2070 

 Calculations performed on 
Vuori cluster at CSC 
 



Strong Scalability 
 Bulk silicon with 1151 atoms 

with periodic boundary 
conditions, 4604 bands and 1 k-
point in the Brillouin zone.  

 The number of GPUs is 
increased from 64 to 256.  

 Grid size: 164x164x108 

 Speed-up comparison to 64 
GPUs.  

 NVIDIA Tesla M2090 

 Calculations performed on 
CURIE cluster in France at 
GENCI/CEA 

 

 



Weak Scalability (Silicon) 
 The size of bulk silicon system and the number of MPI tasks are varied from 383 atoms (1532 

bands) to 2046 atoms (8188 bands) and 8 task to 256 tasks with periodic boundary conditions.  
 The largest system requires about 1.3TB of memory for calculations.  
 CPU: Intel Xeon E5640 GPU:  NVIDIA Tesla M2090 

 



Summary 
 We have accelerated the most numerically intensive parts of ground 

state DFT calculations 
 Overall speed-ups in our tests varied from 8.5 to 19 depending on 

system size. 
 Our multi-GPU implementation scales well even on large hybrid 

clusters. 
 Code is available at GPAW Subversion repository. 
 Acknowledgements to CSC and PRACE for computing resources 
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