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 Large caches 

 Sophisticated control 

 Powerful ALU 

 Reduced operation latency  

 Small caches 
 Simple control 
 Energy efficient ALUs 

 Many, long latency but heavily 
pipelined for high throughput 

 Require massive number of 
threads to tolerate latencies  
 



Porting to GPUs 
 Identify numerical bottlenecs on CPU and replace them with GPU equivalents. 

 Minimize memory transfers between host and devive. 

 Usually attaining good performance requires also porting a lot of non-intensive 
routines. 

 Performance: 

 GPU:  Nvidia Tesla M2070 (DP  515 Gflops. Mem bw: 150GB/s)  Tesla K20 
(DP 1170 Gflops. Mem bw: 208GB/s) 

 CPU: Intel Xeon X5650 (DP 10.664 Gflops per core. Total: 64 Gflops. Mem 
bw: 32GB/s) 

 Theoretically GPU 18 times faster and has 6.5 times the bandwidth! 



GPAW GPU Implementation 
 GPAW coded in Python with extensions written in C for performance 

critical parts. 

 Goal for GPU implementation: High level algorithms and code stay 
same. Change only low level routines 

 NumPy toolkit is used to perform operations on Python using 
multidimensional arrays. 

 Standard libraries are used for linear algebra operations (BLAS, 
LAPACK, SCALAPACK) 

 Use PyCUDA toolkit, NVIDIA CuBLAS library and several custom 
CUDA kernels. 

 Double precision arithmetic 
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Ground state solution in GPAW 
 An iterative procedure called Self-

Consistent Field (SCF) calculation 
 Most computationally intensive 

parts: Construction of the 
Hamiltonian, subspace 
diagonalization, refining of of 
wavefunctions and 
ortrhonormalization. 

 Uniform real space grids   
 A coarse grid is used for the wave 

functions and a fine grid for 
potentials and densities 
 



Constructing the Hamiltonian 
 The most time-consuming parts are the calculation of the Hartree and 

the exchange-correlation potentials 

 Hartree potential is solved from the Poisson equation 

 Done for a fine grid using a multi-grid solver 

 Basic operations are: finite difference stencils for the Laplace operator 
and restriction and interpolation between coarser and finer grids 

 Custom CUDA kernels for all of these operations 

 Solved entirely on GPUs 

 Speed-ups between 10-20 on a single GPU 

 



LibXC on GPUs 
 A reusable library of >250 exchange-

correlation functionals 
 Used by 15 different codes (Abinit, 

GPAW, BigDFT, etc.) 
 Can be a performance bottleneck for 

small systems 
 Can “clone” existing functionals for GPU 

use with fairly minimal changes to 
existing LibXC code  and parallelizes 
well over grid points 

 More information: 
 https://confluence.slac.stanford.edu/d

isplay/SUNCAT/libxc+on+GPUs 

 Work by Lin Li, Jun Yan, Christopher 
O’Grady (Stanford/SLAC) 
 

Functional Type Speedup 
((GPU+CPU)/CPU) 

PW, PW Mode, 
OB PW, PW 
RPA 

LDA 
Correlation 

23,23,23,37 

PBE, PBE sol, 
xPBE, PBE JRGX, 
RGE2, APBE 

GGA 
Correlation 

56, 58, 58, 
58, 58, 58 

RPBE GGA 
Exchange 

95 

TPSS MGGA 
Exchange 

51 

https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs


Updating the Wave functions 
 Eigensolver: Residual minimization scheme - direct inversion in the iterative subspace 

(RMM-DIIS) 

 Wave functions are updated with the residuals 𝑅𝑛𝐺 = 𝐻 − 𝜖𝑛𝑆 𝜓 𝑛𝐺 

 Accelerated using preconditioned residuals by solving approximately a Poisson equation 
with a multigrid method 

 Explicit subspace diagonalization and orthonormalization required 
 Subspace diagonalization: Hamiltonian is applied to the wave functions. The resulting matrix 

then diagonalized  and multiplied by the wave-functions. 

 Orthonormalization: Overlap matrix is constructed by applying an ovelap operator. This is then 
Cholesky decomposed and multiplied with the wave functions. 

 Integrals of projector functions multiplied by wave functions and addition of projector functions 
multiplied by a matrix to the wave functions 

 Avoid large memory transfers: 
 All wave functions are stored in GPU memory 

 All operations performed using GPU 

 

 

 



Stencil Operations 
 Process the grid slice-by-slice 
 Calculations perfomed using combination of registers and 

shared memory 
 Parallelized over grid points 
 Supports real, complex and periodic grids  
 Speed-ups on large grids with Fermi 27-54x and  with 

Kepler  37-103x 
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Batching on GPU 
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 Small grids cause performance issues 

 Block of grids using one kernel 

 Used in stencil operations and in several BLAS functions 

 Can increase performance up to 10 times on a 30x30x30 
grid and up to 5 times on a 60x60x60 grid 



Getting and Building GPU GPAW 
 Libraries needed: Libxc (2.0.0 or newer), CUDA Toolkit, PyCUDA  2012.1  
 Get the CUDA branch:  

svn co https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda 

 In the gpaw/c/cuda directory: 
 edit make.inc for correct library/include directories 
 run make 

 Add to customize.py: 
 define_macros += [('GPAW_CUDA', '1')] 

 Add libraries: gpaw-cuda, cublas, cuda, xc 

 Continue with normal installation 
 Most of the tests test suite should pass successfully 

https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda
https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda


Using GPU GPAW 
 Using CUDA in calculations:  
gpaw-python --cuda Au224.py 

 Or pass cuda parameter to GPAW calculator:  
calc = GPAW( ... , cuda=True , ... ) 

 Additional command line arguments: 

 --debug-cuda  
Performs same operations with GPU and CPU and compares results 

 --cuda-sync  
Synchronizes CUDA context with GPAW timers 



Ground State Performance 
Bulk Silicon Fullerene 
 95 atoms  with periodic boundary conditions, 

380 bands and 1 k-points. Complex grid size: 
56x56x80.  

 Time is in seconds per one SCF iteration. 

 Intel Xeon X5650, NVIDIA Tesla M2070 

 C60 molecule with 240 valence electrons. Grid 
size: 80x80x84 

 Intel Xeon X5650, NVIDIA Tesla M2070 

 

 Si95 CPU GPU % S-Up 

Poisson Solver 2.1 0.12 0.5% 17 

Orthonormalization 60 5.0 23% 12 

Precondition 19 1.5 6.6% 12 

RMM-DIIS other 48 4.7 22% 10 

Subspace Diag 84 5.6 25% 14 

Other 4.5 5.1 23% 0.8 

Total (SCF-Iter)  217 22 9.8 

C60 CPU GPU % S-Up 

12 0.64 7.6% 19 

10 0.95 11% 11 

17 0.93 11% 18 

7.2 0.58 7% 12 

21 1.8 22% 11 
3.6 3.5 41% 1.1 
71 8.4 8.5 



Multi-GPU Parallelization 
 Parallelization is done with MPI 
 Multiple GPUs can be used by domain decomposition or 

parallelization over k-points  or spins  
 Domain decomposition for the stencil operations involves exchanging 

boundary regions between neighboring nodes 
 Communications between nodes require data movement:  device 

memory → host memory →  destinations node host memory → 
destinations node  device memory. 

 Overlaps receives, sends and computations in the middle part of the 
grid, BUT this causes issues with small grids 
 Small grids: Synchronous transfers 
 Medium grids: Asynchronous transfers 
 Large grids:  Overlap calculations and asynchronous transfers 
 Combine of several wave functions and boundary regions into few large 

transfers 

 

GPU1 GPU2 

GPU3 GPU4 



Using MPI 
 MPI works automatically:   
mpirun -np 4 gpaw-python --cuda Au224.py 

 GPU card selected based on MPI rank 

 One-to-One mapping between GPU cards, CPU cores and MPI tasks is 
assumed 

 Supports CUDA aware MPI implementations (mvapcih2, openmpi) 

 Needs CUDA_MPI definition in customize.py and make.inc 

 GPUDirect 

 



Weak Scalability (Carbon) 
 The size of a carbon nanotube 

and the number of MPI tasks 
are varied from 80 atoms (240 
states) to 320 atoms (1280 
states) and 1 task to 12 tasks. 

 Comparison between equal 
number of GPUs and CPU 
cores.  

 CPU: Intel Xeon X5650  GPU:  
NVIDIA Tesla M2070 

 Calculations performed on 
Vuori cluster at CSC 
 



Strong Scalability 
 Bulk silicon with 1151 atoms 

with periodic boundary 
conditions, 4604 bands and 1 k-
point in the Brillouin zone.  

 The number of GPUs is 
increased from 64 to 256.  

 Grid size: 164x164x108 

 Speed-up comparison to 64 
GPUs.  

 NVIDIA Tesla M2090 

 Calculations performed on 
CURIE cluster in France at 
GENCI/CEA 

 

 



Weak Scalability (Silicon) 
 The size of bulk silicon system and the number of MPI tasks are varied from 383 atoms (1532 

bands) to 2046 atoms (8188 bands) and 8 task to 256 tasks with periodic boundary conditions.  
 The largest system requires about 1.3TB of memory for calculations.  
 CPU: Intel Xeon E5640 GPU:  NVIDIA Tesla M2090 

 



Summary 
 We have accelerated the most numerically intensive parts of ground 

state DFT calculations 
 Overall speed-ups in our tests varied from 8.5 to 19 depending on 

system size. 
 Our multi-GPU implementation scales well even on large hybrid 

clusters. 
 Code is available at GPAW Subversion repository. 
 Acknowledgements to CSC and PRACE for computing resources 
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