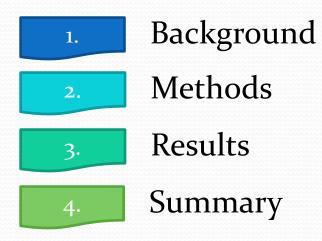
Multi-GPU Accelerated Large Scale Electronic Structure Calculations Samuli Hakala **COMP** Centre of Excellence **Department of Applied Physics** Aalto University School of Science Email: samuli.hakala@aalto.fi GPAW Workshop, May 2013

Aalto University School of Science

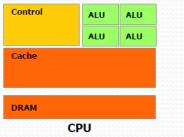


Collaborators:

SUNCAT CENTER FOR INTERFACE SCIENCE AND CATALYSIS

Ville Havu, Jussi Enkovaara and Risto Nieminen @ Aalto University Christopher O'Grady, Lin Li, Jun Yan @ SUNCAT Center in Stanford/SLAC

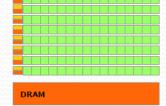
CPU



- Large caches
- Sophisticated control
- Powerful ALU
 - Reduced operation latency

GPU

- Small caches
- Simple control
- Energy efficient ALUs
 - Many, long latency but heavily pipelined for high throughput
- Require massive number of threads to tolerate latencies



GPU

Porting to GPUs

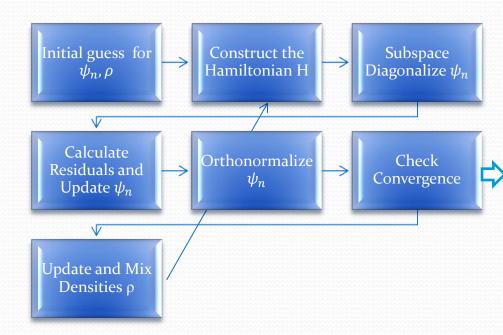
- Identify numerical bottlenecs on CPU and replace them with GPU equivalents.
- Minimize memory transfers between host and devive.
- Usually attaining good performance requires also porting a lot of non-intensive routines.
- Performance:
 - GPU: Nvidia Tesla M2070 (DP 515 Gflops. Mem bw: 150GB/s) Tesla K20 (DP 1170 Gflops. Mem bw: 208GB/s)
 - CPU: Intel Xeon X5650 (DP 10.664 Gflops per core. Total: 64 Gflops. Mem bw: 32GB/s)
 - Theoretically GPU 18 times faster and has 6.5 times the bandwidth!

GPAW GPU Implementation

- GPAW coded in Python with extensions written in C for performance critical parts.
- Goal for GPU implementation: High level algorithms and code stay same. Change only low level routines
- NumPy toolkit is used to perform operations on Python using multidimensional arrays.
- Standard libraries are used for linear algebra operations (BLAS, LAPACK, SCALAPACK)
- Use PyCUDA toolkit, NVIDIA CuBLAS library and several custom CUDA kernels.
- Double precision arithmetic

Ground state solution in GPAW

- An iterative procedure called Self-Consistent Field (SCF) calculation
- Most computationally intensive parts: Construction of the Hamiltonian, subspace diagonalization, refining of of wavefunctions and ortrhonormalization.
- Uniform real space grids
- A coarse grid is used for the wave functions and a fine grid for potentials and densities



Constructing the Hamiltonian

- The most time-consuming parts are the calculation of the Hartree and the exchange-correlation potentials
- Hartree potential is solved from the Poisson equation
- Done for a fine grid using a multi-grid solver
- Basic operations are: finite difference stencils for the Laplace operator and restriction and interpolation between coarser and finer grids
- Custom CUDA kernels for all of these operations
- Solved entirely on GPUs
- Speed-ups between 10-20 on a single GPU

LibXC on GPUs

- A reusable library of >250 exchangecorrelation functionals
- Used by 15 different codes (Abinit, GPAW, BigDFT, etc.)
- Can be a performance bottleneck for small systems
- Can "clone" existing functionals for GPU use with fairly minimal changes to existing LibXC code and parallelizes well over grid points
- More information:
 - <u>https://confluence.slac.stanford.edu/d</u> <u>isplay/SUNCAT/libxc+on+GPUs</u>
- Work by Lin Li, Jun Yan, Christopher O'Grady (Stanford/SLAC)

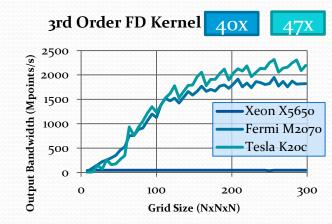
Functional	Туре	Speedup ((GPU+CPU)/CPU)
PW, PW Mode, OB PW, PW RPA	LDA Correlation	23,23,23,37
PBE, PBE sol, xPBE, PBE JRGX, RGE2, APBE	GGA Correlation	56, 58, 58, 58, 58, 58
RPBE	GGA Exchange	95
TPSS	MGGA Exchange	51

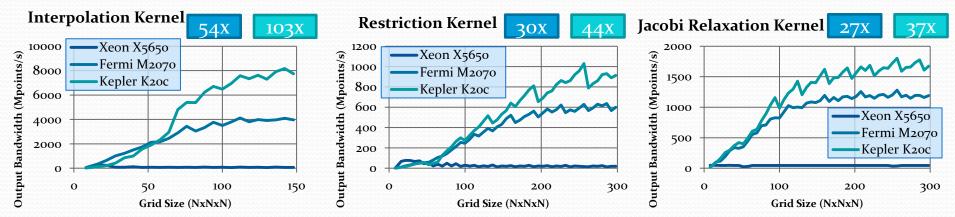
Updating the Wave functions

- Eigensolver: Residual minimization scheme direct inversion in the iterative subspace (RMM-DIIS)
- Wave functions are updated with the residuals $R_{nG} = (\hat{H} \epsilon_n \hat{S})\tilde{\psi}_{nG}$
- Accelerated using preconditioned residuals by solving approximately a Poisson equation with a multigrid method
- Explicit subspace diagonalization and orthonormalization required
 - Subspace diagonalization: Hamiltonian is applied to the wave functions. The resulting matrix then diagonalized and multiplied by the wave-functions.
 - Orthonormalization: Overlap matrix is constructed by applying an ovelap operator. This is then Cholesky decomposed and multiplied with the wave functions.
 - Integrals of projector functions multiplied by wave functions and addition of projector functions multiplied by a matrix to the wave functions
- Avoid large memory transfers:
 - All wave functions are stored in GPU memory
 - All operations performed using GPU

Stencil Operations

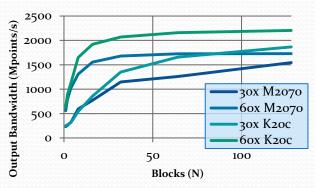
- Process the grid slice-by-slice
- Calculations perfomed using combination of registers and shared memory
- Parallelized over grid points
- Supports real, complex and periodic grids
- Speed-ups on large grids with Fermi 27-54x and with Kepler 37-103x

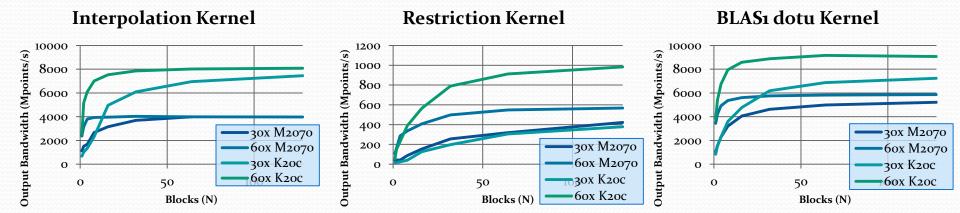




Batching on GPU

- Small grids cause performance issues
- Block of grids using one kernel
- Used in stencil operations and in several BLAS functions
- Can increase performance up to 10 times on a 30x30x30 grid and up to 5 times on a 60x60x60 grid





Getting and Building GPU GPAW

- Libraries needed: Libxc (2.0.0 or newer), CUDA Toolkit, PyCUDA 2012.1
- Get the CUDA branch: svn co <u>https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda</u>
- In the gpaw/c/cuda directory:
 - edit make.inc for correct library/include directories
 - run make
- Add to customize.py:
 - define_macros += [('GPAW_CUDA', '1')]
 - Add libraries: gpaw-cuda, cublas, cuda, xc
- Continue with normal installation
- Most of the tests test suite should pass successfully

Using GPU GPAW

- Using CUDA in calculations: gpaw-python --cuda Au224.py
- Or pass cuda parameter to GPAW calculator:
 calc = GPAW(..., cuda=True , ...)
- Additional command line arguments:
 - --debug-cuda

Performs same operations with GPU and CPU and compares results

--cuda-sync

Synchronizes CUDA context with GPAW timers

Ground State Performance

Bulk Silicon

- 95 atoms with periodic boundary conditions, 380 bands and 1 k-points. Complex grid size: 56x56x80.
- Time is in seconds per one SCF iteration.
- Intel Xeon X5650, NVIDIA Tesla M2070

Fullerene

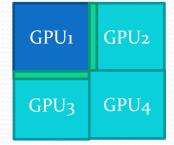
- C60 molecule with 240 valence electrons. Grid size: 80x80x84
- Intel Xeon X5650, NVIDIA Tesla M2070

Si95	CPU	GPU	%	S-Up
Poisson Solver	2.1	0.12	0.5%	17
Orthonormalization	60	5.0	23%	12
Precondition	19	1.5	6.6%	12
RMM-DIIS other	48	4.7	22%	10
Subspace Diag	84	5.6	25%	14
Other	4.5	5.1	23%	0.8
Total (SCF-Iter)	217	22		9.8

С6о	CPU	GPU	%	S-Up
	12	0.64	7.6%	19
	10	0.95	11%	11
	17	0.93	11%	18
	7.2	0.58	7%	12
	21	1.8	22%	11
	3.6	3.5	41%	1.1
	71	8.4		8.5

Multi-GPU Parallelization

- Parallelization is done with MPI
- Multiple GPUs can be used by domain decomposition or parallelization over k-points or spins
- Domain decomposition for the stencil operations involves exchanging boundary regions between neighboring nodes
- Communications between nodes require data movement: device memory → host memory → destinations node host memory → destinations node device memory.
- Overlaps receives, sends and computations in the middle part of the grid, BUT this causes issues with small grids
 - Small grids: Synchronous transfers
 - Medium grids: Asynchronous transfers
 - Large grids: Overlap calculations and asynchronous transfers
 - Combine of several wave functions and boundary regions into few large transfers

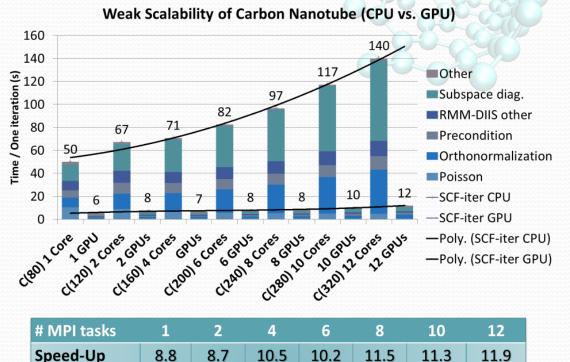


Using MPI

- MPI works automatically: mpirun -np 4 gpaw-python --cuda Au224.py
- GPU card selected based on MPI rank
- One-to-One mapping between GPU cards, CPU cores and MPI tasks is assumed
- Supports CUDA aware MPI implementations (mvapcih2, openmpi)
 - Needs CUDA_MPI definition in customize.py and make.inc
 - GPUDirect

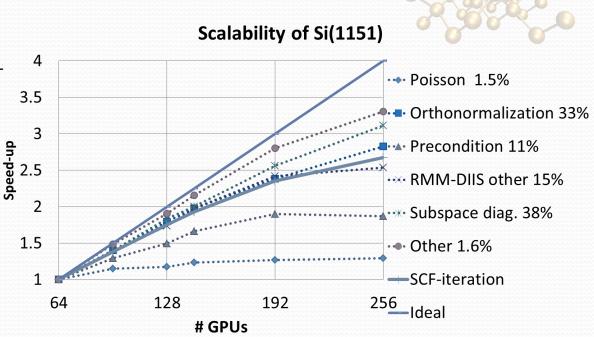
Weak Scalability (Carbon)

- The size of a carbon nanotube and the number of MPI tasks are varied from 80 atoms (240 states) to 320 atoms (1280 states) and 1 task to 12 tasks.
- Comparison between equal number of GPUs and CPU cores.
- CPU: Intel Xeon X5650 GPU: NVIDIA Tesla M2070
- Calculations performed on Vuori cluster at CSC



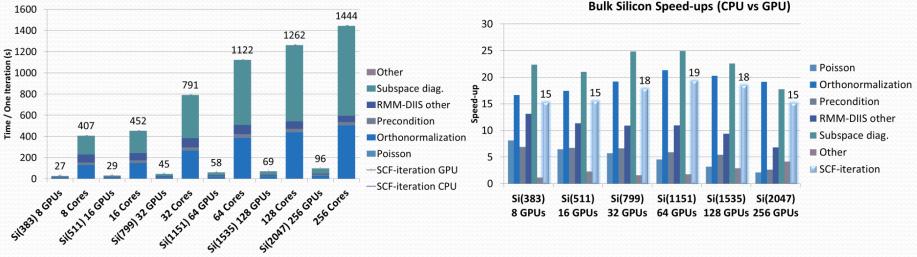
Strong Scalability

- Bulk silicon with 1151 atoms with periodic boundary conditions, 4604 bands and 1 kpoint in the Brillouin zone.
- The number of GPUs is increased from 64 to 256.
- Grid size: 164x164x108
- Speed-up comparison to 64 GPUs.
- NVIDIA Tesla M2090
- Calculations performed on CURIE cluster in France at GENCI/CEA



Weak Scalability (Silicon)

- The size of bulk silicon system and the number of MPI tasks are varied from 383 atoms (1532 bands) to 2046 atoms (8188 bands) and 8 task to 256 tasks with periodic boundary conditions.
- The largest system requires about 1.3TB of memory for calculations.
- CPU: Intel Xeon E5640 GPU: NVIDIA Tesla M2090



Weak Scalability of Bulk Silicon (GPU vs CPU)

Summary

- We have accelerated the most numerically intensive parts of ground state DFT calculations
- Overall speed-ups in our tests varied from 8.5 to 19 depending on system size.
- Our multi-GPU implementation scales well even on large hybrid clusters.
- Code is available at GPAW Subversion repository.
- Acknowledgements to CSC and PRACE for computing resources

Hakala S., Havu V., Enkovaara J., Nieminen R. M. "Parallel Electronic Structure Calculations Using Multiple Graphics Processing Units (GPUs)" In: Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 63--76. Springer, Heidelberg (2013)