. Multi-GPU Accelerated targe
Scale Electronic Structure
Calculations

Samuli Hakala
entre of Excellence
Applied Physics
hool of Science
akala@aalto.fi
hop, May 2013



mailto:samuli.hakala@aalto.fi

verview

Background
Methods

Results

Summary
L
= A
Collaborators: SUNCAT ..o A'
Ville Havu, Jussi Enkovaara and Risto Nieminen @ Aalto University S
Christopher O’Grady, Lin Li, Jun Yan @ SUNCAT Center in Schoolor Selence

Stanford/SLAC



Control

* Large caches

* Sophisticated control
* Powerful ALU
e Reduced operation latency

IEEEEEEE

Small caches e

Simple control =
Energy efficient ALUs

e Many, long latency but heavily
pipelined for high throughput

Require massive number of
threads to tolerate latencies



Porting to GPUs

Identify numerical bottlenecs on CPU and replace them with GPU equivalents.
Minimize memory transfers between host and devive.

Usually attaining good performance requires also porting a lot of non-intensive
routines.

Performance:

e GPU: Nvidia Tesla M2o70 (DP 515 Gflops. Mem bw: 150GB/s) Tesla K20
(DP 1170 Gflops. Mem bw: 208GB/s)

e CPU: Intel Xeon X5650 (DP 10.664 Gflops per core. Total: 64 Gflops. Mem
bw: 32GB/s)

e Theoretically GPU 18 times faster and has 6.5 times the bandwidth!



//

GPAW GPU Implementation

GPAW coded in Python with extensions written in C for performance
critical parts.

Goal for GPU implementation: High level algorithms and code stay
same. Change only low level routines

NumPy toolkit is used to perform operations on Python using
multidimensional arrays.

Standard libraries are used for linear algebra operations (BLAS,
LAPACK, SCALAPACK)

Use PyCUDA toolkit, NVIDIA CuBLAS library and several custom
CUDA kernels.

Double precision arithmetic



L

- Ground state solution in GPAW

* An iterative procedure called Self-

Consistent Field (SCF) calculation

Most computationally intensive
parts: Construction of the
Hamiltonian, subspace
diagonalization, refining of of
wavefunctions and
ortrhonormalization.

Uniform real space grids

A coarse grid is used for the wave
functions and a fine grid for
potentials and densities

nitial guess for

Yn, p

Construct the
Hamiltonian H

Subspace
Diagonalize ¢,

rthonormalize

Un

Check
Convergence

pdate and Mix
Densities p




//

Constructing the Hamiltonian

The most time-consuming parts are the calculation of the Hartree and
the exchange-correlation potentials

Hartree potential is solved from the Poisson equation
Done for a fine grid using a multi-grid solver

Basic operations are: finite difference stencils for the Laplace operator
and restriction and interpolation between coarser and finer grids

Custom CUDA kernels for all of these operations
Solved entirely on GPUs
Speed-ups between 10-20 on a single GPU



A reusable library of >250 exchange- .
Used by 15 different codes (Abinit, -

GPAW, BigDFT, etc.) PW,PW Mode, LDA  23,23,23,37
Can be a performance bottleneck for DL [P, I Correlation
small systems RPA
Can “clone” existing functionals for GPU  PBE, PBE sol, GGA 56, 58, 58,
use with fairly minimal changes to xPBE, PBE JRGX, Correlation 8,58, 58
sl ; : ) ) 5%, 5%, 5
existing LibXC code and parallelizes RGE2, APBE
well over grid points
; e RPBE GGA 95
More information:
Exchange
TPSS MGGA 51
Work by Lin Li, Jun Yan, Christopher Exchange

O’Grady (Stanford/SLAC)


https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs

Updating the Wave functions

Eigensolver: Residual minimization scheme - direct inversion in the iterative subspace
(RMM-DIIS)

Wave functions are updated with the residuals R,,; = (f—i —€,S )1,5,10

Accelerated using preconditioned residuals by solving approximately a Poisson equation
with a multigrid method

Explicit subspace diagonalization and orthonormalization required

e Subspace diagonalization: Hamiltonian is applied to the wave functions. The resulting matrix
then diagonalized and multiplied by the wave-functions.

e Orthonormalization: Overlap matrix is constructed by applying an ovelap operator. This is then
Cholesky decomposed and multiplied with the wave functions.

e Integrals of projector functions multiplied by wave functions and addition of projector functions
multiplied by a matrix to the wave functions

Avoid large memory transfers:
e All wave functions are stored in GPU memory
e All operations performed using GPU



Output Bandwidth (Mpoints/s)

Stencil Operations

Interpolation Kernel
ﬁ ~ ~ , -

10000
8000
6000
4000
2000

o

Process the grid slice-by-slice

Calculations perfomed using combination of registers and

shared memory

Parallelized over grid points
Supports real, complex and periodic grids
Speed-ups on large grids with Fermi 27-54x and with

Kepler 37-103x

e Fermi M2070
= Kepler K20c

Xeon X5650

0

o

1
50 100
Grid Size (NxNxN)

150

Output Bandwidth (Mpoints/s)

1200
1000
8o0
600
400

200

o
1

Xeon X5650
e Fermi M2070
= Kepler K20c

| A\

AN

NN

—

o 100

200 300

Grid Size (NxNxN)

Output Bandwidth (Mpoints/s)

Output Bandwidth (Mpoints/s)

3rd Order FD Kernel

2500
2000
1500
1000

500

(0}

2000

1500

1000

500

(o]

Xeon X5650

= Fermi M2070

Tesla K2oc

|Z

(o]

100

200

300

Grid Size (NxNxN)

Restriction Kernel 30X Jacobi Relaxation Kernel

WW

/./

£

Xeon X5650

= Fermi M2070
== Kepler K20c

o

100

200

300

Grid Size (NxNxN)




Output Bandwidth (Mpoints/s)

Batching on GPU

10000
8000
6000
4000
2000

o

Used in stencil operations and in several BLAS functions

Can increase performance up to 10 times on a 30x30x30

Restriction Kernel

P

7

—

[

(0}

Small grids cause performance issues
Block of grids using one kernel
grid and up to 5 times on a 60x60x60 grid
Interpolation Kernel
1200
g 1000
Cr 'S 8oo
2 600
e
30x M2o70 :"; A0
|/ 60x M2o70 | g 200
! 30x K2oc 2 o
o 50 60x K2oc g
Blocks (N) 8

50
Blocks (N)

60x M20o70

30x K2oc
60x K20c

Output Bandwidth (Mpoints/s)

Output Bandwidth (Mpoints/s)

2500
2000
1500
1000

500

10000
8000
6000
4000

2000

—

/
) M B
60x M2o70

30x M2o70
/ 30x K2oc
60x K2o0c
0 50 100
Blocks (N)
BLAS1 dotu Kernel
A
e
/ 30x M2o70
I 60x M2o70
30x K2oc
o 50 60x K2oc
Blocks (N)




/

Getting and Building GPU GPAW

Libraries needed: Libxc (2.0.0 or newer), CUDA Toolkit, PyCUDA 2012.1
Get the CUDA branch:

svh co
In the gpaw/c/cuda directory:
e edit make.inc for correct library/include directories
e run make
Add to customize.py:
e define macros += [('GPAW CUDA', '1')]
e Add libraries: gpaw-cuda, cublas, cuda, xc
Continue with normal installation
Most of the tests test suite should pass successfully



https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda
https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda

Using GPU GPAW

Using CUDA in calculations:
gpaw-python --cuda Au224.py

Or pass cuda parameter to GPAW calculator:
calc = GPANG - ctida=-Tpue

Additional command line arguments:

e --debug-cuda

Performs same operations with GPU and CPU and compares results
e --cuda-sync

Synchronizes CUDA context with GPAW timers



" Ground State Performance

Bulk Silicon Fullerene
* o95atoms with periodic boundary conditions, o
380 bands and 1 k-points. Complex grid size: size: 80x80x84
56x56x80. o

* Time is in seconds per one SCF iteration.
¢ Intel Xeon X5650, NVIDIA Tesla M20o70
Poisson Solver 21 012 0.5% 17
Orthonormalization 60 50 23% 12
recondition 19 1.5 6.6% 12
MM-DIIS other 48 4.7  22% 10
ubspace Diag 84 56 25% 14
Other 23% 0.8

45 51
Total SCFIter) | a1 22 | o8

3.6 3.5
Y

Intel Xeon X5650, NVIDIA Tesla M2070

)
12 0.64 7.6% 19
10 0.95 1% 11
17 0.93 1% 18
7.2 058 7% 12
21 1.8 22% 1
41% 1.1

C60 molecule with 240 valence electrons. Grid



Multi-GPU Parallelization

e Parallelization is done with MPI

* Multiple GPUs can be used by domain decomposition or
parallelization over k-points or spins

* Domain decomposition for the stencil operations involves exchanging
boundary regions between neighboring nodes

¢ Communications between nodes require data movement: device
memory — host memory — destinations node host memory —
destinations node device memory.

* Opverlaps receives, sends and computations in the middle part of the
grid, BUT this causes issues with small grids

e Small grids: Synchronous transfers
e Medium grids: Asynchronous transfers
e Large grids: Overlap calculations and asynchronous transfers

e Combine of several wave functions and boundary regions into few large
transfers




Using MPI

MPI works automatically:
mpirun -np 4 gpaw-python --cuda Au224.py

GPU card selected based on MPI rank

One-to-One mapping between GPU cards, CPU cores and MPI tasks is
assumed

Supports CUDA aware MPI implementations (mvapcih2, openmpi)

e Needs CUDA MPI definition in customize.py and make.inc
e GPUDirect



e

Weak Scalability (Carbon)

* The size of a carbon nanotube

and the number of MPI tasks
are varied from 8o atoms (240
states) to 320 atoms (1280
states) and 1 task to 12 tasks.

* Comparison between equal
number of GPUs and CPU

cores.

* CPU: Intel Xeon X5650 GPU:
NVIDIA Tesla M2o70

* C(alculations performed on
Vuori cluster at CSC

Weak Scalability of Carbon Nanotube (CPU vs. GPU)

160
140 -
= mOther
g YAl R
2 100 M Subspace diag.
g mRMM-DIIS other
g 805 M Precondition
3 60 M Orthonormalization
E 40 M Poisson
20 - —SCF-iter CPU
0 : : : . —SCF-iter GPU
& Q\) S N E Y Y E Y LY &Y —Poly. (SCF-iter CPU)
e d T d I d ST e
\"’ v v h 07 © & D O D DN oly. ( iter )
o N S ) S N N
& & N° o> o> g >
e

# MPI tasks

Speed-Up

88 87 105 102 115 113 119




Strong Scalability

Bulk silicon with 1151 atoms

with periodic boundary aedlablityof Sit L)

T e
COl:ldlt.IOI‘lS, 46(?4 bgnds and 1k o
point in the Brillouin zone. 35
The number of GPUs is - #- Orthonormalization 33%
increased from 64 to 256. R ﬁ « Precondition 11%

L PO o T
Grid size: 164x164x108 §2.5 RN DG ko ees
Speed-up comparison to 64 e O :
GPUS S S oL L T PRD.C Subspace d|ag_ 389%

: Y A

NVIDIA Tesla M20go - . = Other 1%
Calculations performed on 1 wef B ——SCF-iteration
CURIE cluster in France at 64 128 192 256

—|deal

GENCI/CEA # GPUs



.

Weak Scalability (Silicon)

* The size of bulk silicon system and the number of MPI tasks are varied from 383 atoms (1532
bands) to 2046 atoms (8188 bands) and 8 task to 256 tasks with periodic boundary conditions.

* The largest system requires about 1.3TB of memory for calculations.
* CPU: Intel Xeon E5640 GPU: NVIDIA Tesla M20o9go

Weak Scalability of Bulk Silicon (GPU vs CPU)

1600 T Bulk Silicon Speed-ups (CPU vs GPU)
30

1400 1262
w1200 - 1122 251
c .
2 1000 M Other 19 M Poisson
g 29 18 1B m Orthonormalization
5 :
£ 800 - M Subspace diag. g- 15 15 15 A
& WRMM-DIIS other g 15 - - ® Precondition
E 600 M Precondition & ® RMM-DIIS other
£ 400 mOrthonormalization 20 ] ' | | | mSubspace diag.

200 45 58 69 96 M Poisson ol i | | | | mOther
ord —SCF-iteration GPU .4 SCF-iteration
ﬂ ———
M —SCF-iteration CPU 0 - ' ' - ;
& & @ e i i i i i i
(3 d‘-" c3 d,s é; & Q’q d_,\ 2 @ d,\ Si(383)  Si(511) Si(799) Si(1151) Si(1535) Si(2047)
.\‘b NN \"o ) ,.;b & .{b .\"b ¢, (,,b 8GPUs 16 GPUs 32 GPUs 64 GPUs 128 GPUs 256 GPUs
&l S S o Gy
N g 9 N 2 >
9 N g AN 4 &
I G



Summary

We have accelerated the most numerically intensive parts of ground
state DFT calculations

Overall speed-ups in our tests varied from 8.5 to 19 depending on
system size.

Our multi-GPU implementation scales well even on large hybrid
clusters.

Code is available at GPAW Subversion repository.
Acknowledgements to CSC and PRACE for computing resources

Hakala S., Havu V., Enkovaara J., Nieminen R. M. "Parallel Electronic Structure
Calculations Using Multiple Graphics Processing Units (GPUs)” In: Manninen,
P., Oster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 63--76. Springer, Heidelberg
(2013)



