
Samuli Hakala
COMP Centre of Excellence

Department of Applied Physics
 Aalto University School of Science

Email: samuli.hakala@aalto.fi
GPAW Workshop, May 2013

mailto:samuli.hakala@aalto.fi

Background

Overview

Collaborators:

1.

Methods 2.

Results 3.

Summary 4.

Ville Havu, Jussi Enkovaara and Risto Nieminen @ Aalto University
Christopher O’Grady, Lin Li, Jun Yan @ SUNCAT Center in
Stanford/SLAC

 Large caches

 Sophisticated control

 Powerful ALU

 Reduced operation latency

 Small caches
 Simple control
 Energy efficient ALUs

 Many, long latency but heavily
pipelined for high throughput

 Require massive number of
threads to tolerate latencies

Porting to GPUs
 Identify numerical bottlenecs on CPU and replace them with GPU equivalents.

 Minimize memory transfers between host and devive.

 Usually attaining good performance requires also porting a lot of non-intensive
routines.

 Performance:

 GPU: Nvidia Tesla M2070 (DP 515 Gflops. Mem bw: 150GB/s) Tesla K20
(DP 1170 Gflops. Mem bw: 208GB/s)

 CPU: Intel Xeon X5650 (DP 10.664 Gflops per core. Total: 64 Gflops. Mem
bw: 32GB/s)

 Theoretically GPU 18 times faster and has 6.5 times the bandwidth!

GPAW GPU Implementation
 GPAW coded in Python with extensions written in C for performance

critical parts.

 Goal for GPU implementation: High level algorithms and code stay
same. Change only low level routines

 NumPy toolkit is used to perform operations on Python using
multidimensional arrays.

 Standard libraries are used for linear algebra operations (BLAS,
LAPACK, SCALAPACK)

 Use PyCUDA toolkit, NVIDIA CuBLAS library and several custom
CUDA kernels.

 Double precision arithmetic

Initial guess for
𝜓𝑛, 𝜌

Construct the
Hamiltonian H

Subspace
Diagonalize 𝜓𝑛

Calculate
Residuals and

Update 𝜓𝑛

Orthonormalize
𝜓𝑛

Check
Convergence

Update and Mix
Densities ρ

Ground state solution in GPAW
 An iterative procedure called Self-

Consistent Field (SCF) calculation
 Most computationally intensive

parts: Construction of the
Hamiltonian, subspace
diagonalization, refining of of
wavefunctions and
ortrhonormalization.

 Uniform real space grids
 A coarse grid is used for the wave

functions and a fine grid for
potentials and densities

Constructing the Hamiltonian
 The most time-consuming parts are the calculation of the Hartree and

the exchange-correlation potentials

 Hartree potential is solved from the Poisson equation

 Done for a fine grid using a multi-grid solver

 Basic operations are: finite difference stencils for the Laplace operator
and restriction and interpolation between coarser and finer grids

 Custom CUDA kernels for all of these operations

 Solved entirely on GPUs

 Speed-ups between 10-20 on a single GPU

LibXC on GPUs
 A reusable library of >250 exchange-

correlation functionals
 Used by 15 different codes (Abinit,

GPAW, BigDFT, etc.)
 Can be a performance bottleneck for

small systems
 Can “clone” existing functionals for GPU

use with fairly minimal changes to
existing LibXC code and parallelizes
well over grid points

 More information:
 https://confluence.slac.stanford.edu/d

isplay/SUNCAT/libxc+on+GPUs

 Work by Lin Li, Jun Yan, Christopher
O’Grady (Stanford/SLAC)

Functional Type Speedup
((GPU+CPU)/CPU)

PW, PW Mode,
OB PW, PW
RPA

LDA
Correlation

23,23,23,37

PBE, PBE sol,
xPBE, PBE JRGX,
RGE2, APBE

GGA
Correlation

56, 58, 58,
58, 58, 58

RPBE GGA
Exchange

95

TPSS MGGA
Exchange

51

https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs
https://confluence.slac.stanford.edu/display/SUNCAT/libxc+on+GPUs

Updating the Wave functions
 Eigensolver: Residual minimization scheme - direct inversion in the iterative subspace

(RMM-DIIS)

 Wave functions are updated with the residuals 𝑅𝑛𝐺 = 𝐻 − 𝜖𝑛𝑆 𝜓 𝑛𝐺

 Accelerated using preconditioned residuals by solving approximately a Poisson equation
with a multigrid method

 Explicit subspace diagonalization and orthonormalization required
 Subspace diagonalization: Hamiltonian is applied to the wave functions. The resulting matrix

then diagonalized and multiplied by the wave-functions.

 Orthonormalization: Overlap matrix is constructed by applying an ovelap operator. This is then
Cholesky decomposed and multiplied with the wave functions.

 Integrals of projector functions multiplied by wave functions and addition of projector functions
multiplied by a matrix to the wave functions

 Avoid large memory transfers:
 All wave functions are stored in GPU memory

 All operations performed using GPU

Stencil Operations
 Process the grid slice-by-slice
 Calculations perfomed using combination of registers and

shared memory
 Parallelized over grid points
 Supports real, complex and periodic grids
 Speed-ups on large grids with Fermi 27-54x and with

Kepler 37-103x

0

500

1000

1500

2000

2500

0 100 200 300

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

3rd Order FD Kernel

Xeon X5650

Fermi M2070

Tesla K20c

40x 47x

0

2000

4000

6000

8000

10000

0 50 100 150

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

Interpolation Kernel

Xeon X5650

Fermi M2070

Kepler K20c

54x 103x

0

200

400

600

800

1000

1200

0 100 200 300

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

Restriction Kernel

Xeon X5650

Fermi M2070

Kepler K20c

30x 44x

0

500

1000

1500

2000

0 100 200 300

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Grid Size (NxNxN)

Jacobi Relaxation Kernel

Xeon X5650

Fermi M2070

Kepler K20c

27x 37x

Batching on GPU

0

500

1000

1500

2000

2500

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

3rd Order FD Kernel

30x M2070
60x M2070
30x K20c
60x K20c

0

2000

4000

6000

8000

10000

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

Interpolation Kernel

30x M2070
60x M2070
30x K20c
60x K20c

0

200

400

600

800

1000

1200

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

Restriction Kernel

30x M2070
60x M2070
30x K20c
60x K20c

0

2000

4000

6000

8000

10000

0 50 100

O
u

tp
u

t
B

a
n

d
w

id
th

 (
M

p
o

in
ts

/s
)

Blocks (N)

BLAS1 dotu Kernel

30x M2070
60x M2070
30x K20c
60x K20c

 Small grids cause performance issues

 Block of grids using one kernel

 Used in stencil operations and in several BLAS functions

 Can increase performance up to 10 times on a 30x30x30
grid and up to 5 times on a 60x60x60 grid

Getting and Building GPU GPAW
 Libraries needed: Libxc (2.0.0 or newer), CUDA Toolkit, PyCUDA 2012.1
 Get the CUDA branch:

svn co https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda

 In the gpaw/c/cuda directory:
 edit make.inc for correct library/include directories
 run make

 Add to customize.py:
 define_macros += [('GPAW_CUDA', '1')]

 Add libraries: gpaw-cuda, cublas, cuda, xc

 Continue with normal installation
 Most of the tests test suite should pass successfully

https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda
https://svn.fysik.dtu.dk/projects/gpaw/branches/cuda

Using GPU GPAW
 Using CUDA in calculations:
gpaw-python --cuda Au224.py

 Or pass cuda parameter to GPAW calculator:
calc = GPAW(... , cuda=True , ...)

 Additional command line arguments:

 --debug-cuda
Performs same operations with GPU and CPU and compares results

 --cuda-sync
Synchronizes CUDA context with GPAW timers

Ground State Performance
Bulk Silicon Fullerene
 95 atoms with periodic boundary conditions,

380 bands and 1 k-points. Complex grid size:
56x56x80.

 Time is in seconds per one SCF iteration.

 Intel Xeon X5650, NVIDIA Tesla M2070

 C60 molecule with 240 valence electrons. Grid
size: 80x80x84

 Intel Xeon X5650, NVIDIA Tesla M2070

 Si95 CPU GPU % S-Up

Poisson Solver 2.1 0.12 0.5% 17

Orthonormalization 60 5.0 23% 12

Precondition 19 1.5 6.6% 12

RMM-DIIS other 48 4.7 22% 10

Subspace Diag 84 5.6 25% 14

Other 4.5 5.1 23% 0.8

Total (SCF-Iter) 217 22 9.8

C60 CPU GPU % S-Up

12 0.64 7.6% 19

10 0.95 11% 11

17 0.93 11% 18

7.2 0.58 7% 12

21 1.8 22% 11
3.6 3.5 41% 1.1
71 8.4 8.5

Multi-GPU Parallelization
 Parallelization is done with MPI
 Multiple GPUs can be used by domain decomposition or

parallelization over k-points or spins
 Domain decomposition for the stencil operations involves exchanging

boundary regions between neighboring nodes
 Communications between nodes require data movement: device

memory → host memory → destinations node host memory →
destinations node device memory.

 Overlaps receives, sends and computations in the middle part of the
grid, BUT this causes issues with small grids
 Small grids: Synchronous transfers
 Medium grids: Asynchronous transfers
 Large grids: Overlap calculations and asynchronous transfers
 Combine of several wave functions and boundary regions into few large

transfers

GPU1 GPU2

GPU3 GPU4

Using MPI
 MPI works automatically:
mpirun -np 4 gpaw-python --cuda Au224.py

 GPU card selected based on MPI rank

 One-to-One mapping between GPU cards, CPU cores and MPI tasks is
assumed

 Supports CUDA aware MPI implementations (mvapcih2, openmpi)

 Needs CUDA_MPI definition in customize.py and make.inc

 GPUDirect

Weak Scalability (Carbon)
 The size of a carbon nanotube

and the number of MPI tasks
are varied from 80 atoms (240
states) to 320 atoms (1280
states) and 1 task to 12 tasks.

 Comparison between equal
number of GPUs and CPU
cores.

 CPU: Intel Xeon X5650 GPU:
NVIDIA Tesla M2070

 Calculations performed on
Vuori cluster at CSC

Strong Scalability
 Bulk silicon with 1151 atoms

with periodic boundary
conditions, 4604 bands and 1 k-
point in the Brillouin zone.

 The number of GPUs is
increased from 64 to 256.

 Grid size: 164x164x108

 Speed-up comparison to 64
GPUs.

 NVIDIA Tesla M2090

 Calculations performed on
CURIE cluster in France at
GENCI/CEA

Weak Scalability (Silicon)
 The size of bulk silicon system and the number of MPI tasks are varied from 383 atoms (1532

bands) to 2046 atoms (8188 bands) and 8 task to 256 tasks with periodic boundary conditions.
 The largest system requires about 1.3TB of memory for calculations.
 CPU: Intel Xeon E5640 GPU: NVIDIA Tesla M2090

Summary
 We have accelerated the most numerically intensive parts of ground

state DFT calculations
 Overall speed-ups in our tests varied from 8.5 to 19 depending on

system size.
 Our multi-GPU implementation scales well even on large hybrid

clusters.
 Code is available at GPAW Subversion repository.
 Acknowledgements to CSC and PRACE for computing resources

Hakala S., Havu V., Enkovaara J., Nieminen R. M. ”Parallel Electronic Structure
Calculations Using Multiple Graphics Processing Units (GPUs)” In: Manninen,
P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 63--76. Springer, Heidelberg
(2013)

