
Electronic structure calculations with the GPAW code

History of GPAW

New PAW setups for GPAW

Plane-wave implementation

Future work



The not very accurate history of GPAW

Around 2002: We need an improved Dacapo:
Aim for big systems and massively parallel computers
Better parallelization - do everything directly in real-space
Based on the Projector-augmented wave method

September 2003 - August 2005: Sponsored by The Carlsberg
Foundation

2004: k-point sampling implemented

October 2005: Finnish connection (TDDFT, GLLB, meta-GGA, ...)

2007: Work on LCAO basis set begins

2007: GPAW based on libxc

2009: Cray, BlueGene

2009: FFT implementation of the Rutgers-Chalmers vdW-DF

2010: Non-orthorhombic cells

2011: Linear dielectric response of an extended system

2012: Plane-wave basis added



GPAW Sprint (November 2007)



GPAW Sprint (November 2007) ...



More trivia

GPAW used to be called GridPAW

The code started its life in CVS, then moved to SVN at berlios.de
and then finally to our own SVN server

The compiled part of GPAW was written in C++ in the beginning

GPAW’s web-pages used to be in a MoinMoin wiki

We’ve used both Numeric, numarray and numpy as our Python
array package



More numbers

cpu hours of tests: 4150
number of committers: 43
gpaw-users subscribers: 278
gpaw-developers subscribers: 135
gpaw-svncheckins subscribers: 22



Homepage from 2004



Download page from 2004



Testing GPAW’s PAW setups

Challenges:

We need good benchmark results we can trust.

Getting correct lattice constants or bond-lengths does not
guarantee that the setup is good.

Getting correct cohesive energy or atomization energy is a better
test, but this involves atoms: not fun!

Formation energies for bulk oxides would be a good test, but
some of the oxide structures are quite complicated and contain
many atoms.

FHI-aims: All-electron full-potential density functional theory code
using a numeric local orbital basis set.
https://aimsclub.fhi-berlin.mpg.de

ELK: All-electron full-potential linearised augmented-plane
wave (FP-LAPW) code.
http://elk.sourceforge.net/

https://aimsclub.fhi-berlin.mpg.de
http://elk.sourceforge.net/


Strategy

Optimize volume for fcc and rock-salt (oxygen + X) for all
elements (from hydrogen to nobelium) using AIMS and ELK.

Do non-relativistic calculations.

Compress fcc and rock-salt structures to 90 % of equilibrium
lattice constants.

Use oxide formation energies and fcc and rock-salt compression
energies as benchmark numbers.

Simple tests make iterations faster.

Note

This kind of work is extremely boring



AIMS reference energies



Oxide formation energies relative to AIMS



Ruthenium example

Adsorption energies in eV: Ru(001) + 1
2 X2 - X/Ru(001)

0.8 0.9 0.10 Gajdoš
et al.

O/Ru(001) 2.51 2.78 2.78 2.67

N/Ru(001) 0.46 0.88 0.93 0.94

H/Ru(001) 0.54 0.57 0.59

NO - 1
2 N2 - 1

2 O2 0.96 0.95 0.96 0.95

M. Gajdoš, J. Hafner and A. Eichler, J.Phys.: Condens. Matter 18
(2006) 41-54



FCC compression energies relative to AIMS



Rock-salt compression energies relative to AIMS



PAW approximations

For each element we have to choose:

which states to freeze and which to include as valence

the number of projectors, partial waves and pseudo partial waves

the local potential

radii for projector functions, local potential and compensation
charges

We also need to think about:

convergence with respect to number of grid-points/plane-waves

egg-box errors



Iron example

8e 16e 16e+ FHI-aims ELK

oxide formation 3.58 3.56 3.59 3.60 3.60

fcc compression 1.35 1.32 1.26 1.27

rock-salt compression 2.25 2.18 2.04 2.04



Logarithmic derivatives at r=2.3 Bohr (8e and 16e+)



Plane-wave Mode

Advantages:

Fast for not too large systems

Fast convergence with respect to number of plane-waves

Smaller memory footprint

Simpler density mixing metric and preconditioning

No egg-box error

Simple implementation of stress tensor

Poisson equation is solved in reciprocal space. Can also be used in
lcao and fd mode:

calc = GPAW(..., realspace=False, ...)



Plane-wave implementation

It’s based on FFTW and does the
projector wave function overlaps
in reciprocal space with ZGEMM.

ψ̃(r) = ∑
G<Gc

cGeiG·r.

mode=PW(ecut=400): ecut= 1
2 G2

c

Zero-pad and do inverse FFT to real-space (grid-spacing:
h=π/G2).
If h is not set, we choose G2 =

√
2Gc (and not G2 = 2Gc).

Using FFT’s, the electron density is interpolated to a real-space
grid of grid-spacing h/2 corresponding to G3 = 2G2.
There is currently no way to control the value used for G3.



The future

Important work:

New PAW setups

Robust eigensolver/density mixer

GPAW-1.0?

Also important work, but not as important as the above:

Better basis sets for lcao

Parallelize plane-wave calculations over plane-waves

Generalized multigrid solvers that can handle grid sizes of the
form: 2a3b5c7d



Thursday (May 23)

Activities for GPAW developers (we start at 9:00):

Coordination of code development and discussions about the
future: Quick tour of ongoing projects - what’s the current status?

Introduction to Sphinx and reStructuredText

Introduction to testing of GPAW

Hands on: Write new documentation/tutorials and how to make
sure they stay up to date

Lunch

Status of unmerged branches: rpa-gpu-expt, cuda, lcaotddft,
lrtddft_indexed, aep1, libxc1.2.0
Questions open for discussion:

When do we drop support for Python 2.4 and 2.5?
Strategy for porting GPAW to Python 3?
Switch from SVN to Bazaar and Launchpad?

Hands on: Write new documentation/tutorials --- continued

Presentations of today’s work (we stop at 15:00)



Finally ...

Thank you for your attention,
and don’t forget to give me your pdf file from your talk


