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Al Gpaw

Implementation of projector augmented wave
method on

— uniform real-space grids, atomic orbital basis,
plane waves

Density-functional theory, time-dependent DFT,
many-body perturbation theory, ...

Open source software licensed under GPL

wiki.fysik.dtu.dk/gpaw

J. J. Mortensen et al., Phys. Rev. B 71, 035109 (2005)

J. Enkovaara et al., J. Phys. Condens. Matter 22, 253202 (2010)
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A Outline

* Basis sets in GPAW
* Overview of GPAW features
* Performance and parallelization
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A Real-space grids
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* Wave functions, electron densities, and
potentials are represented on grids.

* Single parameter, grid spacing h

"

* Accuracy of calculation can be improved
systematically

* Derivatives by finite differences
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A Boundary conditions

* Real-space description allows flexible
boundary conditions

* Zero boundary conditions (finite systems)
* Periodic boundary conditions (bulk systems)
 Boundary conditions can be mixed

— periodic in one dimension (wires)
— periodic in two dimensions (surfaces)



». Localized basis set

Linear combination of atomic orbitals (LCAQ)
provide compact basis set
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The atomic orbitals are obtained from a free
atom in a confining potential well

Possible to switch between localized basis and
real-space grids

Same boundary conditions as with real-space
grid
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A Plane wave basis

* Functions which are periodic with respect to
unit cell can be written as sum of plane waves
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where G are reciprocal lattice vectors

* The expansioln Is truncated according to
§‘G+k|2 < Ecutoff

* Only periodic cells (supercells)
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-, Comparison on basis sets
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* Real-space grids
— systematic convergence with single parameter
- some integrals complicated in real-space
— good parallelization prospects

* Localized basis set
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- compact basis
— systematic convergence can be difficult

* Plane waves

0O®

— systematic convergence with single parameter
— some integrals simplified in reciprocal space

- very efficient in small to medium size systems
— parallelization more limited due FFTs

IS



A' GPAW features

* Ground state properties
- Total energies, forces,
magnetic moments
— Structural optimization
— Analysis of electronic structure

. Corrugation of BN
* Wide range of XC-potentials  sheeton Al surface

(thanks to libxc!) (vdW functional)

— LDAs, GGAs, meta-GGAs, hybrids,
DFT+U, vdW, RPA
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A Time-dependent DFT
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* Real-time propagation
— Optical absoprtion spectra

— Non-linear emission
- Ehrenfest dynamics

* Linear response

— Casida equation (finite systems)
— Dyson equation (extended systems)

— Excitation energies, optical absorption,
electron energy loss spectra
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J. Yan et al PRB 83, 245122 (2011)



A! Many-body perturbation

== theory

* GW-approximation
— Quasiparticle band structure
* Bethe-Salpeter equation s
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A' Other features
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* Transport (Non-equilibrium Green functions)
 XAS spectra N

. STM simulations V s W
 ASCF

* Wannier functions

STM image 6f
Al (100) surface
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Al Usage features

* Simple but flexible Python scripting interface
via Atomic Simulation Environment

* Modular design helps implementing new
features

* Runs on wide variety of computer
architectures from simple Linux workstations
to big supercomputers (Blue Gene P/Q,

Cray, ...)

— experimental GPGPU support

* Efficient parallelization, system sizes up to
thousands of electrons
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Parallelization over several degrees
of freedom

Domain decomposition
(real-space, LCAO)

. . Finite difference+
— only local communication Laplacian

Parallelization over k-points and spin

— periodic and magnetic systems
Parallelization over electronic states



A' Parallelization in GPAW

* Some GPAW features have additional
parallelization possibilities

* Real-time TDDFT: trivial parallelization
over electronic states

* Linear response TDDFT, Bethe-Salpeter:
parallelization over electron-hole pairs

* GW: parallelization over energy
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A Parallel scalability
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A GPAW performance
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* Generally, GPAW has similar performance
to equivalent DFT packages

VASP vs. GPAW
Performance on Sisu
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1269 atom MgHZ2 system, courtesy of T. Bjorkman
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A Summary

* GPAW is a versatile program package for
electronic structure calculations

 Different basis sets
 Vast set of features

 Well suitable for large scale calculations
on massively parallel computers
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